rpca


Namerpca JSON
Version 0.1.6 PyPI version JSON
download
home_pagehttps://github.com/loiccoyle/RPCA
SummaryRobust PCA using Accelerated Alternating Projection
upload_time2024-06-26 13:32:15
maintainerNone
docs_urlNone
authorLoic Coyle
requires_python<3.13,>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AccAltProj for robust PCA

<p align="center">
  <a href="https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml"><img src="https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml/badge.svg"></a>
  <a href="https://pypi.org/project/rpca/"><img src="https://img.shields.io/pypi/v/rpca"></a>
  <a href="./LICENSE.md"><img src="https://img.shields.io/badge/license-MIT-blue.svg"></a>
  <img src="https://img.shields.io/badge/platform-linux%20%7C%20macOS%20%7C%20windows-informational">
</p>

> Port of the AccAltProj algorithm for robust PCA to python.

<div align="center">
  <image src="https://github.com/loiccoyle/RPCA/assets/33181239/dbccf187-740f-461f-8e05-78ad497b2d30" />
</div>

This is a python port of the [AccAltProj algorithm for robust PCA](https://github.com/caesarcai/AccAltProj_for_RPCA), described in this [paper](https://arxiv.org/abs/1711.05519).

This implementation follows `sklearn`'s `fit` & `transform` API.

## 📦 Installation

Requires python 3

In a terminal:

```sh
pip install rpca
```

As always, it is usually a good idea to use a [virtual environment](https://docs.python.org/3/library/venv.html).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/loiccoyle/RPCA",
    "name": "rpca",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Loic Coyle",
    "author_email": "loic.coyle@hotmail.fr",
    "download_url": "https://files.pythonhosted.org/packages/fa/c3/c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347/rpca-0.1.6.tar.gz",
    "platform": null,
    "description": "# AccAltProj for robust PCA\n\n<p align=\"center\">\n  <a href=\"https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml\"><img src=\"https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml/badge.svg\"></a>\n  <a href=\"https://pypi.org/project/rpca/\"><img src=\"https://img.shields.io/pypi/v/rpca\"></a>\n  <a href=\"./LICENSE.md\"><img src=\"https://img.shields.io/badge/license-MIT-blue.svg\"></a>\n  <img src=\"https://img.shields.io/badge/platform-linux%20%7C%20macOS%20%7C%20windows-informational\">\n</p>\n\n> Port of the AccAltProj algorithm for robust PCA to python.\n\n<div align=\"center\">\n  <image src=\"https://github.com/loiccoyle/RPCA/assets/33181239/dbccf187-740f-461f-8e05-78ad497b2d30\" />\n</div>\n\nThis is a python port of the [AccAltProj algorithm for robust PCA](https://github.com/caesarcai/AccAltProj_for_RPCA), described in this [paper](https://arxiv.org/abs/1711.05519).\n\nThis implementation follows `sklearn`'s `fit` & `transform` API.\n\n## \ud83d\udce6 Installation\n\nRequires python 3\n\nIn a terminal:\n\n```sh\npip install rpca\n```\n\nAs always, it is usually a good idea to use a [virtual environment](https://docs.python.org/3/library/venv.html).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Robust PCA using Accelerated Alternating Projection",
    "version": "0.1.6",
    "project_urls": {
        "Homepage": "https://github.com/loiccoyle/RPCA",
        "Repository": "https://github.com/loiccoyle/RPCA"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7bd3ea0c721d27ec79654cfce4703f5e45490e9724112185b864500cb15e418a",
                "md5": "e0c53d6c8c9f16963f21cb6cbaedf5e2",
                "sha256": "501e5ad50120a94b4e48ce9d96e3e1d7f27695b5942ae87d6bb0cdd9bf36df5e"
            },
            "downloads": -1,
            "filename": "rpca-0.1.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e0c53d6c8c9f16963f21cb6cbaedf5e2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.9",
            "size": 6355,
            "upload_time": "2024-06-26T13:32:14",
            "upload_time_iso_8601": "2024-06-26T13:32:14.279784Z",
            "url": "https://files.pythonhosted.org/packages/7b/d3/ea0c721d27ec79654cfce4703f5e45490e9724112185b864500cb15e418a/rpca-0.1.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fac3c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347",
                "md5": "a271b9669f8d23095e9d2b1f3e719d11",
                "sha256": "b4c9ff780f975bf82a9948293cbedab258d1af6ac8797b9430456ec8b42800f8"
            },
            "downloads": -1,
            "filename": "rpca-0.1.6.tar.gz",
            "has_sig": false,
            "md5_digest": "a271b9669f8d23095e9d2b1f3e719d11",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.9",
            "size": 5624,
            "upload_time": "2024-06-26T13:32:15",
            "upload_time_iso_8601": "2024-06-26T13:32:15.407775Z",
            "url": "https://files.pythonhosted.org/packages/fa/c3/c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347/rpca-0.1.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-26 13:32:15",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "loiccoyle",
    "github_project": "RPCA",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "rpca"
}
        
Elapsed time: 0.44546s