Name | rpca JSON |
Version |
0.1.6
JSON |
| download |
home_page | https://github.com/loiccoyle/RPCA |
Summary | Robust PCA using Accelerated Alternating Projection |
upload_time | 2024-06-26 13:32:15 |
maintainer | None |
docs_url | None |
author | Loic Coyle |
requires_python | <3.13,>=3.9 |
license | MIT |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# AccAltProj for robust PCA
<p align="center">
<a href="https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml"><img src="https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml/badge.svg"></a>
<a href="https://pypi.org/project/rpca/"><img src="https://img.shields.io/pypi/v/rpca"></a>
<a href="./LICENSE.md"><img src="https://img.shields.io/badge/license-MIT-blue.svg"></a>
<img src="https://img.shields.io/badge/platform-linux%20%7C%20macOS%20%7C%20windows-informational">
</p>
> Port of the AccAltProj algorithm for robust PCA to python.
<div align="center">
<image src="https://github.com/loiccoyle/RPCA/assets/33181239/dbccf187-740f-461f-8e05-78ad497b2d30" />
</div>
This is a python port of the [AccAltProj algorithm for robust PCA](https://github.com/caesarcai/AccAltProj_for_RPCA), described in this [paper](https://arxiv.org/abs/1711.05519).
This implementation follows `sklearn`'s `fit` & `transform` API.
## 📦 Installation
Requires python 3
In a terminal:
```sh
pip install rpca
```
As always, it is usually a good idea to use a [virtual environment](https://docs.python.org/3/library/venv.html).
Raw data
{
"_id": null,
"home_page": "https://github.com/loiccoyle/RPCA",
"name": "rpca",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.9",
"maintainer_email": null,
"keywords": null,
"author": "Loic Coyle",
"author_email": "loic.coyle@hotmail.fr",
"download_url": "https://files.pythonhosted.org/packages/fa/c3/c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347/rpca-0.1.6.tar.gz",
"platform": null,
"description": "# AccAltProj for robust PCA\n\n<p align=\"center\">\n <a href=\"https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml\"><img src=\"https://github.com/loiccoyle/RPCA/actions/workflows/ci.yml/badge.svg\"></a>\n <a href=\"https://pypi.org/project/rpca/\"><img src=\"https://img.shields.io/pypi/v/rpca\"></a>\n <a href=\"./LICENSE.md\"><img src=\"https://img.shields.io/badge/license-MIT-blue.svg\"></a>\n <img src=\"https://img.shields.io/badge/platform-linux%20%7C%20macOS%20%7C%20windows-informational\">\n</p>\n\n> Port of the AccAltProj algorithm for robust PCA to python.\n\n<div align=\"center\">\n <image src=\"https://github.com/loiccoyle/RPCA/assets/33181239/dbccf187-740f-461f-8e05-78ad497b2d30\" />\n</div>\n\nThis is a python port of the [AccAltProj algorithm for robust PCA](https://github.com/caesarcai/AccAltProj_for_RPCA), described in this [paper](https://arxiv.org/abs/1711.05519).\n\nThis implementation follows `sklearn`'s `fit` & `transform` API.\n\n## \ud83d\udce6 Installation\n\nRequires python 3\n\nIn a terminal:\n\n```sh\npip install rpca\n```\n\nAs always, it is usually a good idea to use a [virtual environment](https://docs.python.org/3/library/venv.html).\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Robust PCA using Accelerated Alternating Projection",
"version": "0.1.6",
"project_urls": {
"Homepage": "https://github.com/loiccoyle/RPCA",
"Repository": "https://github.com/loiccoyle/RPCA"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7bd3ea0c721d27ec79654cfce4703f5e45490e9724112185b864500cb15e418a",
"md5": "e0c53d6c8c9f16963f21cb6cbaedf5e2",
"sha256": "501e5ad50120a94b4e48ce9d96e3e1d7f27695b5942ae87d6bb0cdd9bf36df5e"
},
"downloads": -1,
"filename": "rpca-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e0c53d6c8c9f16963f21cb6cbaedf5e2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.9",
"size": 6355,
"upload_time": "2024-06-26T13:32:14",
"upload_time_iso_8601": "2024-06-26T13:32:14.279784Z",
"url": "https://files.pythonhosted.org/packages/7b/d3/ea0c721d27ec79654cfce4703f5e45490e9724112185b864500cb15e418a/rpca-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fac3c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347",
"md5": "a271b9669f8d23095e9d2b1f3e719d11",
"sha256": "b4c9ff780f975bf82a9948293cbedab258d1af6ac8797b9430456ec8b42800f8"
},
"downloads": -1,
"filename": "rpca-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "a271b9669f8d23095e9d2b1f3e719d11",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.9",
"size": 5624,
"upload_time": "2024-06-26T13:32:15",
"upload_time_iso_8601": "2024-06-26T13:32:15.407775Z",
"url": "https://files.pythonhosted.org/packages/fa/c3/c0d57c172bed70bbdec6e12159f5b66ed462057520808174b0bed4580347/rpca-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-26 13:32:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "loiccoyle",
"github_project": "RPCA",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "rpca"
}