rportion


Namerportion JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/tilmann-bartsch/rportion
SummaryPython data structure and operations for 2-dimensional rectilinear polygons
upload_time2024-04-02 12:25:14
maintainerNone
docs_urlNone
authorTilmann Bartsch
requires_python>=3.9
licenseMIT
keywords rectangle polygon interval-tree
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # rportion - data structure and operations for rectilinear polygons


[![PyPI pyversions](https://img.shields.io/pypi/pyversions/rportion)](https://pypi.org/project/rportion/)
[![Tests](https://github.com/tilmann-bartsch/rportion/actions/workflows/test.yaml/badge.svg?branch=master)](https://github.com/tilmann-bartsch/portion/actions/workflows/test.yaml)
[![Coverage Status](https://coveralls.io/repos/github/tilmann-bartsch/rportion/badge.svg?branch=master)](https://coveralls.io/github/tilmann-bartsch/rportion?branch=master)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Commits](https://img.shields.io/github/last-commit/tilmann-bartsch/rportion/master)](https://github.com/tilmann-bartsch/rportion/commits/master)

The `rportion` library provides data structure to represent 
2D [rectilinear polygons](https://en.wikipedia.org/wiki/Rectilinear_polygon) (unions of 2D-intervals) in Python 3.9+.
It is built upon the library [`portion`](https://github.com/AlexandreDecan/portion) and follows its concepts.
The following features are provided:

 - 2D-Intervals (rectangles) which can be open/closed and finite/infinite at every boundary
 - intersection, union, complement and difference of rectilinear polygons
 - iterator over all maximum rectangles inside and outside a given polygon

In the case of integers/floats it can be used to keep track of the area resulting 
from the union/difference of rectangles:

<p align="center">
  <img width="65%" src="https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_solid.gif">
</p>

Internally the library uses an [interval tree](https://en.wikipedia.org/wiki/Interval_tree) to represent a polygon.

## Table of contents

  * [Installation](#installation)
  * [Documentation & usage](#documentation--usage)
      * [Polygon creation](#polygon-creation)
      * [Polygon bounds & attributes](#polygon-bounds--attributes)
      * [Polygon operations](#polygon-operations)
      * [Rectangle partitioning iterator](#rectangle-partitioning-iterator)
      * [Maximum rectangle iterator](#maximum-rectangle-iterator)
      * [Boundary](#boundary)
      * [Internal data structure](#internal-data-structure)
  * [Changelog](#changelog)
  * [Contributions](#contributions)
  * [License](#license)

## Installation

`rportion` can be installed from [PyPi](https://pypi.org/project/rportion/) with `pip` using 

```bash
pip install rportion
```

Alternatively, clone the repository and run

```bash
pip install -e ".[test]"
python -m unittest discover -s tests
```

Note that `python

## Documentation & usage

### Polygon creation

Atomic polygons (rectangles) can be created by one of the following:
```python
>>> import rportion as rp
>>> rp.ropen(0, 2, 0, 1)
(x=(0,2), y=(0,1))
>>> rp.rclosed(0, 2, 0, 1)
(x=[0,2], y=[0,1])
>>> rp.ropenclosed(0, 2, 0, 1)
(x=(0,2], y=(0,1])
>>> rp.rclosedopen(0, 2, 0, 1)
(x=[0,2), y=[0,1))
>>> rp.rsingleton(0, 1)
(x=[0], y=[1])
>>> rp.rempty()
(x=(), y=())
```

Polygons can also be created by using two intervals of the underlying library 
[`portion`](https://github.com/AlexandreDecan/portion):
```python
>>> import portion as P
>>> import rportion as rp
>>> rp.RPolygon.from_interval_product(P.openclosed(0, 2), P.closedopen(0, 1))
(x=(0,2], y=[0,1))
```

[&uparrow; back to top](#table-of-contents)
### Polygon bounds & attributes

An `RPolygon` defines the following properties
 - `empty` is true if the polygon is empty.
   ```python
   >>> rp.rclosed(0, 2, 1, 2).empty
   False
   >>> rp.rempty().empty
   True
   ```
 - `atomic` is true if the polygon can be expressed by a single rectangle.
   ```python
   >>> rp.rempty().atomic
   True
   >>> rp.rclosedopen(0, 2, 1, 2).atomic
   True
   >>> (rp.rclosed(0, 2, 1, 2) | rp.rclosed(0, 2, 1, 3)).atomic
   True
   >>> (rp.rclosed(0, 2, 1, 2) | rp.rclosed(1, 2, 1, 3)).atomic
   False
   ```
 - `enclosure` is the smallest rectangle containing the polygon.
   ```python
   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).enclosure
   (x=[0,3], y=[0,2])
   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).enclosure
   (x=(-inf,+inf), y=[-3,3])
   ```
 - `enclosure_x_interval` is the smallest rectangle containing the polygon's extension in x-dimension.
   ```python
   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).x_enclosure_interval
   x=[0,3]
   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).x_enclosure_interval
   (-inf,+inf)
   ```
 - `enclosure_y_interval` is the smallest interval containing the polygon's extension in y-dimension.
   ```python
   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).y_enclosure_interval
   [0,2]
   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).y_enclosure_interval
   [-3,3]
   ```
 - `x_lower`, `x_upper`, `y_lower` and `y_upper` yield the boundaries of the rectangle enclosing
   the polygon.
   ```python
   >>> p = rp.rclosedopen(0, 2, 1, 3)
   >>> p.x_lower, p.x_upper, p.y_lower, p.y_upper
   (0, 2, 1, 3)
   ```
 - `x_left`, `x_right`, `y_left` and `y_right` yield the type of the boundaries of the rectangle enclosing
    the polygon.
    ```python
    >>> p = rp.rclosedopen(0, 2, 1, 3)
    >>> p.x_left, p.x_right, p.y_left, p.y_right
    (CLOSED, OPEN, CLOSED, OPEN)
    ```


[&uparrow; back to top](#table-of-contents)
### Polygon operations

`RPolygon` instances support the following operations:
 - `p.intersection(other)` and `p & other` return the intersection of two rectilinear polygons.
   ```python
   >>> rp.rclosed(0, 2, 0, 2) & rp.rclosed(1, 3, 0, 1)
   (x=[1,2], y=[0,1])
   ```
 - `p.union(other)` and `p | other` return the union of two rectilinear polygons.
   ```python
   >>> rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)
   (x=[0,3], y=[0,1]) | (x=[0,2], y=[0,2])
   ```
   Note that the resulting polygon is represented by the union of all maximal rectangles contained in
   in the polygon, see [Maximum rectangle iterators](#maximum-rectangle-iterators).
 - `p.complement()` and `~p` return the complement of the rectilinear polygon.
   ```python
   >>> ~rp.ropen(-P.inf, 0, -P.inf, P.inf)
   ((x=[0,+inf), y=(-inf,+inf))
   ```
 - `p.difference(other)` and `p - other` return the difference of two rectilinear polygons.
   ```python
   rp.rclosed(0, 3, 0, 2) - rp.ropen(2, 4, 1, 3)
   (x=[0,3], y=[0,1]) | (x=[0,2], y=[0,2])
   ```
   Note that the resulting polygon is represented by the union of all maximal rectangles contained in
   in the polygon, see [Maximum rectangle iterators](#maximum-rectangle-iterators).

[&uparrow; back to top](#table-of-contents)
### Rectangle partitioning iterator

The method `rectangle_partitioning` of a `RPolygon` instance returns an iterator
over rectangles contained in the rectilinear polygon which disjunctively cover it. I.e.

```python
>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)
>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)
>>> list(poly.rectangle_partitioning())
[(x=[1,4), y=[2,3)), (x=[2,5), y=[1,2)), (x=[6,8), y=[1,2)), (x=[2,4), y=[3,4)), (x=[7,8), y=[2,3))]
```

which can be visualized as follows:
<p align="center">
  <img width="95%" src="https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_partitioning.png">
</p>

**Left:** Simple Rectilinear polygon. The red areas are part of the polygon.<br>
**Right:** Rectangles in the portion are shown with black borderlines. As it is visible 
           `rectangle_partitioning` prefers rectangles with long x-interval over 
           rectangles with long y-interval.
           


[&uparrow; back to top](#table-of-contents)
### Maximum rectangle iterator

The method `maximal_rectangles` of a `RPolygon` instance returns an iterator over all maximal rectangles contained
in the rectilinear polygon.

A maximal rectangle is rectangle in the polygon which is not a real subset of any other rectangle contained in
the rectilinear polygon. I.e. 

```python
>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)
>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)
>>> list(poly.maximal_rectangles())
[(x=[1, 4), y = [2, 3)), (x=[2, 5), y = [1, 2)), (x=[6, 8), y = [1, 2)), (x=[2, 4), y = [1, 4)), (x=[7, 8), y = [1, 3))]
```
which can be visualized as follows:
<p align="center">
  <img width="95%" src="https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_max-rectangles.png">
</p>

**Left:** Simple Rectilinear polygon. The red areas are part of the polygon.<br>
**Right:** Maximal contained rectangles are drawn above each other transparently.

[&uparrow; back to top](#table-of-contents)
## Boundary

The method `boundary` of a `RPolygon` instance returns another `RPolygon` instance representing the boundary of
the polygon. I.e.

```python
>>> poly = rp.closed(0, 1, 2, 3)
>>> poly.boundary()
(x=[1,2], y=[3]) | (x=[1,2], y=[4]) | (x=[1], y=[3,4]) | (x=[2], y=[3,4])
```

[&uparrow; back to top](#table-of-contents)
## Internal data structure

The polygon is internally stored using an [interval tree](https://en.wikipedia.org/wiki/Interval_tree). Every
node of the tree corresponds to an interval in x-dimension which is representable by boundaries (in x-dimension) 
present in the polygon. Each node contains an 1D-interval (by using the library
[`portion`](https://github.com/AlexandreDecan/portion)) in y-dimension. Combining those 1D-intervals
yields a rectangle contained in the polygon.

I.e. for the rectangle `(x=[0, 2), y=[1, 3))` this can be visualized as follows.
```
  interval tree with      x-interval corresponding       y-interval stored in
 a lattice-like shape             to each node                each node
       ┌─x─┐                      ┌─(-∞,+∞)─┐                  ┌─()──┐
       │   │                      │         │                  │     │
     ┌─x─┬─x─┐               ┌─(-∞,2)──┬──[0,+∞)─┐          ┌─()──┬──()─┐
     │   │   │               │         │         │          │     │     │
     x   x   x            (-∞,0]     [0,2)     [2,+∞)      ()   [1,3)   ()
```
The class `RPolygon` used this model by holding three data structures.
  - `_x_boundaries`: Sorted list of necessary boundaries in x-dimension with type (`OPEN` or `CLOSED`)
  - `_used_y_ranges`: List of lists in a triangular shape representing the interval tree for the
                      space occupied by the rectilinear polygon.
  - `_free_y_ranges`: List of list in a triangular shape representing the interval tree of
                      for the space not occupied by the rectilinear polygon.

Note that a separate data structure for the area outside the polygon is kept.
This is done in order to be able to obtain the complement of a polygon efficiently.

For the example shown above this is:
```python
>>> poly = rp.rclosedopen(0, 2, 1, 3)
>>> poly._x_boundaries
SortedList([(-inf, OPEN), (0, OPEN), (2, OPEN), (+inf, OPEN)])
>>> poly._used_y_ranges
[[(), (), ()], 
 [(), [1,3)], 
 [()]]
>>> poly._free_y_ranges
[[(-inf,1) | [3,+inf), (-inf,1) | [3,+inf), (-inf,+inf)], 
 [(-inf,1) | [3,+inf), (-inf,1) | [3,+inf)], 
 [(-inf,+inf)]]
```

You can use the function `data_tree_to_string` as noted below to print the internal data structure in a tabular format:

```python
>>> poly = rp.rclosedopen(0, 2, 1, 3)
>>> print(data_tree_to_string(poly._x_boundaries, poly._used_y_ranges, 6))
                |  +inf     2     0
----------------+------------------
     -inf (OPEN)|    ()    ()    ()
      0 (CLOSED)|    () [1,3)
      2 (CLOSED)|    ()
```

```python
>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)
>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)
>>> print(data_tree_to_string(poly._x_boundaries, poly._used_y_ranges, 6))
                |  +inf     8     7     6     5     4     2     1
----------------+------------------------------------------------
     -inf (OPEN)|    ()    ()    ()    ()    ()    ()    ()    ()
      1 (CLOSED)|    ()    ()    ()    ()    () [2,3) [2,3)
      2 (CLOSED)|    ()    ()    ()    () [1,2) [1,4)
      4 (CLOSED)|    ()    ()    ()    () [1,2)
      5 (CLOSED)|    ()    ()    ()    ()
      6 (CLOSED)|    () [1,2) [1,2)
      7 (CLOSED)|    () [1,3)
```

```python
def data_tree_to_string(x_boundaries,
                        y_intervals,
                        spacing: int):
    col_space = 10
    n = len(y_intervals)
    msg = " " * (spacing + col_space) + "|"
    for x_b in x_boundaries[-1:0:-1]:
        msg += f"{str(x_b.val):>{spacing}}"
    msg += "\n" + f"-" * (spacing+col_space) + "+"
    for i in range(n):
        msg += f"-" * spacing
    msg += "\n"
    for i, row in enumerate(y_intervals):
        x_b = x_boundaries[i]
        msg += f"{str((~x_b).val) + ' (' + str((~x_b).btype) + ')':>{spacing+ col_space}}|"
        for val in row:
            msg += f"{str(val):>{spacing}}"
        msg += "\n"
    return msg
```

[&uparrow; back to top](#table-of-contents)
## Changelog
This library adheres to a [semantic versioning](https://semver.org/) scheme.
See [CHANGELOG.md](https://github.com/tilmann-bartsch/rportion/blob/master/CHANGELOG.md) for the list of changes.

## Contributions
Contributions are very welcome! Feel free to report bugs or suggest new features using GitHub issues and/or pull requests.

## License
Distributed under [MIT License](https://github.com/tilmann-bartsch/rportion/blob/master/LICENSE).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tilmann-bartsch/rportion",
    "name": "rportion",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "rectangle polygon interval-tree",
    "author": "Tilmann Bartsch",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/81/3c/ab8c1ad3c2f4615800a4afe27715350c912da36c92d69dddabbee916cd06/rportion-0.2.0.tar.gz",
    "platform": null,
    "description": "# rportion - data structure and operations for rectilinear polygons\n\n\n[![PyPI pyversions](https://img.shields.io/pypi/pyversions/rportion)](https://pypi.org/project/rportion/)\n[![Tests](https://github.com/tilmann-bartsch/rportion/actions/workflows/test.yaml/badge.svg?branch=master)](https://github.com/tilmann-bartsch/portion/actions/workflows/test.yaml)\n[![Coverage Status](https://coveralls.io/repos/github/tilmann-bartsch/rportion/badge.svg?branch=master)](https://coveralls.io/github/tilmann-bartsch/rportion?branch=master)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Commits](https://img.shields.io/github/last-commit/tilmann-bartsch/rportion/master)](https://github.com/tilmann-bartsch/rportion/commits/master)\n\nThe `rportion` library provides data structure to represent \n2D [rectilinear polygons](https://en.wikipedia.org/wiki/Rectilinear_polygon) (unions of 2D-intervals) in Python 3.9+.\nIt is built upon the library [`portion`](https://github.com/AlexandreDecan/portion) and follows its concepts.\nThe following features are provided:\n\n - 2D-Intervals (rectangles) which can be open/closed and finite/infinite at every boundary\n - intersection, union, complement and difference of rectilinear polygons\n - iterator over all maximum rectangles inside and outside a given polygon\n\nIn the case of integers/floats it can be used to keep track of the area resulting \nfrom the union/difference of rectangles:\n\n<p align=\"center\">\n  <img width=\"65%\" src=\"https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_solid.gif\">\n</p>\n\nInternally the library uses an [interval tree](https://en.wikipedia.org/wiki/Interval_tree) to represent a polygon.\n\n## Table of contents\n\n  * [Installation](#installation)\n  * [Documentation & usage](#documentation--usage)\n      * [Polygon creation](#polygon-creation)\n      * [Polygon bounds & attributes](#polygon-bounds--attributes)\n      * [Polygon operations](#polygon-operations)\n      * [Rectangle partitioning iterator](#rectangle-partitioning-iterator)\n      * [Maximum rectangle iterator](#maximum-rectangle-iterator)\n      * [Boundary](#boundary)\n      * [Internal data structure](#internal-data-structure)\n  * [Changelog](#changelog)\n  * [Contributions](#contributions)\n  * [License](#license)\n\n## Installation\n\n`rportion` can be installed from [PyPi](https://pypi.org/project/rportion/) with `pip` using \n\n```bash\npip install rportion\n```\n\nAlternatively, clone the repository and run\n\n```bash\npip install -e \".[test]\"\npython -m unittest discover -s tests\n```\n\nNote that `python\n\n## Documentation & usage\n\n### Polygon creation\n\nAtomic polygons (rectangles) can be created by one of the following:\n```python\n>>> import rportion as rp\n>>> rp.ropen(0, 2, 0, 1)\n(x=(0,2), y=(0,1))\n>>> rp.rclosed(0, 2, 0, 1)\n(x=[0,2], y=[0,1])\n>>> rp.ropenclosed(0, 2, 0, 1)\n(x=(0,2], y=(0,1])\n>>> rp.rclosedopen(0, 2, 0, 1)\n(x=[0,2), y=[0,1))\n>>> rp.rsingleton(0, 1)\n(x=[0], y=[1])\n>>> rp.rempty()\n(x=(), y=())\n```\n\nPolygons can also be created by using two intervals of the underlying library \n[`portion`](https://github.com/AlexandreDecan/portion):\n```python\n>>> import portion as P\n>>> import rportion as rp\n>>> rp.RPolygon.from_interval_product(P.openclosed(0, 2), P.closedopen(0, 1))\n(x=(0,2], y=[0,1))\n```\n\n[&uparrow; back to top](#table-of-contents)\n### Polygon bounds & attributes\n\nAn `RPolygon` defines the following properties\n - `empty` is true if the polygon is empty.\n   ```python\n   >>> rp.rclosed(0, 2, 1, 2).empty\n   False\n   >>> rp.rempty().empty\n   True\n   ```\n - `atomic` is true if the polygon can be expressed by a single rectangle.\n   ```python\n   >>> rp.rempty().atomic\n   True\n   >>> rp.rclosedopen(0, 2, 1, 2).atomic\n   True\n   >>> (rp.rclosed(0, 2, 1, 2) | rp.rclosed(0, 2, 1, 3)).atomic\n   True\n   >>> (rp.rclosed(0, 2, 1, 2) | rp.rclosed(1, 2, 1, 3)).atomic\n   False\n   ```\n - `enclosure` is the smallest rectangle containing the polygon.\n   ```python\n   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).enclosure\n   (x=[0,3], y=[0,2])\n   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).enclosure\n   (x=(-inf,+inf), y=[-3,3])\n   ```\n - `enclosure_x_interval` is the smallest rectangle containing the polygon's extension in x-dimension.\n   ```python\n   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).x_enclosure_interval\n   x=[0,3]\n   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).x_enclosure_interval\n   (-inf,+inf)\n   ```\n - `enclosure_y_interval` is the smallest interval containing the polygon's extension in y-dimension.\n   ```python\n   >>> (rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)).y_enclosure_interval\n   [0,2]\n   >>> (rp.rclosed(0, 1, -3, 3) | rp.rclosed(-P.inf, P.inf, -1, 1)).y_enclosure_interval\n   [-3,3]\n   ```\n - `x_lower`, `x_upper`, `y_lower` and `y_upper` yield the boundaries of the rectangle enclosing\n   the polygon.\n   ```python\n   >>> p = rp.rclosedopen(0, 2, 1, 3)\n   >>> p.x_lower, p.x_upper, p.y_lower, p.y_upper\n   (0, 2, 1, 3)\n   ```\n - `x_left`, `x_right`, `y_left` and `y_right` yield the type of the boundaries of the rectangle enclosing\n    the polygon.\n    ```python\n    >>> p = rp.rclosedopen(0, 2, 1, 3)\n    >>> p.x_left, p.x_right, p.y_left, p.y_right\n    (CLOSED, OPEN, CLOSED, OPEN)\n    ```\n\n\n[&uparrow; back to top](#table-of-contents)\n### Polygon operations\n\n`RPolygon` instances support the following operations:\n - `p.intersection(other)` and `p & other` return the intersection of two rectilinear polygons.\n   ```python\n   >>> rp.rclosed(0, 2, 0, 2) & rp.rclosed(1, 3, 0, 1)\n   (x=[1,2], y=[0,1])\n   ```\n - `p.union(other)` and `p | other` return the union of two rectilinear polygons.\n   ```python\n   >>> rp.rclosed(0, 2, 0, 2) | rp.rclosed(1, 3, 0, 1)\n   (x=[0,3], y=[0,1]) | (x=[0,2], y=[0,2])\n   ```\n   Note that the resulting polygon is represented by the union of all maximal rectangles contained in\n   in the polygon, see [Maximum rectangle iterators](#maximum-rectangle-iterators).\n - `p.complement()` and `~p` return the complement of the rectilinear polygon.\n   ```python\n   >>> ~rp.ropen(-P.inf, 0, -P.inf, P.inf)\n   ((x=[0,+inf), y=(-inf,+inf))\n   ```\n - `p.difference(other)` and `p - other` return the difference of two rectilinear polygons.\n   ```python\n   rp.rclosed(0, 3, 0, 2) - rp.ropen(2, 4, 1, 3)\n   (x=[0,3], y=[0,1]) | (x=[0,2], y=[0,2])\n   ```\n   Note that the resulting polygon is represented by the union of all maximal rectangles contained in\n   in the polygon, see [Maximum rectangle iterators](#maximum-rectangle-iterators).\n\n[&uparrow; back to top](#table-of-contents)\n### Rectangle partitioning iterator\n\nThe method `rectangle_partitioning` of a `RPolygon` instance returns an iterator\nover rectangles contained in the rectilinear polygon which disjunctively cover it. I.e.\n\n```python\n>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)\n>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)\n>>> list(poly.rectangle_partitioning())\n[(x=[1,4), y=[2,3)), (x=[2,5), y=[1,2)), (x=[6,8), y=[1,2)), (x=[2,4), y=[3,4)), (x=[7,8), y=[2,3))]\n```\n\nwhich can be visualized as follows:\n<p align=\"center\">\n  <img width=\"95%\" src=\"https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_partitioning.png\">\n</p>\n\n**Left:** Simple Rectilinear polygon. The red areas are part of the polygon.<br>\n**Right:** Rectangles in the portion are shown with black borderlines. As it is visible \n           `rectangle_partitioning` prefers rectangles with long x-interval over \n           rectangles with long y-interval.\n           \n\n\n[&uparrow; back to top](#table-of-contents)\n### Maximum rectangle iterator\n\nThe method `maximal_rectangles` of a `RPolygon` instance returns an iterator over all maximal rectangles contained\nin the rectilinear polygon.\n\nA maximal rectangle is rectangle in the polygon which is not a real subset of any other rectangle contained in\nthe rectilinear polygon. I.e. \n\n```python\n>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)\n>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)\n>>> list(poly.maximal_rectangles())\n[(x=[1, 4), y = [2, 3)), (x=[2, 5), y = [1, 2)), (x=[6, 8), y = [1, 2)), (x=[2, 4), y = [1, 4)), (x=[7, 8), y = [1, 3))]\n```\nwhich can be visualized as follows:\n<p align=\"center\">\n  <img width=\"95%\" src=\"https://github.com/tilmann-bartsch/rportion/raw/master/docu/simple-example_max-rectangles.png\">\n</p>\n\n**Left:** Simple Rectilinear polygon. The red areas are part of the polygon.<br>\n**Right:** Maximal contained rectangles are drawn above each other transparently.\n\n[&uparrow; back to top](#table-of-contents)\n## Boundary\n\nThe method `boundary` of a `RPolygon` instance returns another `RPolygon` instance representing the boundary of\nthe polygon. I.e.\n\n```python\n>>> poly = rp.closed(0, 1, 2, 3)\n>>> poly.boundary()\n(x=[1,2], y=[3]) | (x=[1,2], y=[4]) | (x=[1], y=[3,4]) | (x=[2], y=[3,4])\n```\n\n[&uparrow; back to top](#table-of-contents)\n## Internal data structure\n\nThe polygon is internally stored using an [interval tree](https://en.wikipedia.org/wiki/Interval_tree). Every\nnode of the tree corresponds to an interval in x-dimension which is representable by boundaries (in x-dimension) \npresent in the polygon. Each node contains an 1D-interval (by using the library\n[`portion`](https://github.com/AlexandreDecan/portion)) in y-dimension. Combining those 1D-intervals\nyields a rectangle contained in the polygon.\n\nI.e. for the rectangle `(x=[0, 2), y=[1, 3))` this can be visualized as follows.\n```\n  interval tree with      x-interval corresponding       y-interval stored in\n a lattice-like shape             to each node                each node\n       \u250c\u2500x\u2500\u2510                      \u250c\u2500(-\u221e,+\u221e)\u2500\u2510                  \u250c\u2500()\u2500\u2500\u2510\n       \u2502   \u2502                      \u2502         \u2502                  \u2502     \u2502\n     \u250c\u2500x\u2500\u252c\u2500x\u2500\u2510               \u250c\u2500(-\u221e,2)\u2500\u2500\u252c\u2500\u2500[0,+\u221e)\u2500\u2510          \u250c\u2500()\u2500\u2500\u252c\u2500\u2500()\u2500\u2510\n     \u2502   \u2502   \u2502               \u2502         \u2502         \u2502          \u2502     \u2502     \u2502\n     x   x   x            (-\u221e,0]     [0,2)     [2,+\u221e)      ()   [1,3)   ()\n```\nThe class `RPolygon` used this model by holding three data structures.\n  - `_x_boundaries`: Sorted list of necessary boundaries in x-dimension with type (`OPEN` or `CLOSED`)\n  - `_used_y_ranges`: List of lists in a triangular shape representing the interval tree for the\n                      space occupied by the rectilinear polygon.\n  - `_free_y_ranges`: List of list in a triangular shape representing the interval tree of\n                      for the space not occupied by the rectilinear polygon.\n\nNote that a separate data structure for the area outside the polygon is kept.\nThis is done in order to be able to obtain the complement of a polygon efficiently.\n\nFor the example shown above this is:\n```python\n>>> poly = rp.rclosedopen(0, 2, 1, 3)\n>>> poly._x_boundaries\nSortedList([(-inf, OPEN), (0, OPEN), (2, OPEN), (+inf, OPEN)])\n>>> poly._used_y_ranges\n[[(), (), ()], \n [(), [1,3)], \n [()]]\n>>> poly._free_y_ranges\n[[(-inf,1) | [3,+inf), (-inf,1) | [3,+inf), (-inf,+inf)], \n [(-inf,1) | [3,+inf), (-inf,1) | [3,+inf)], \n [(-inf,+inf)]]\n```\n\nYou can use the function `data_tree_to_string` as noted below to print the internal data structure in a tabular format:\n\n```python\n>>> poly = rp.rclosedopen(0, 2, 1, 3)\n>>> print(data_tree_to_string(poly._x_boundaries, poly._used_y_ranges, 6))\n                |  +inf     2     0\n----------------+------------------\n     -inf (OPEN)|    ()    ()    ()\n      0 (CLOSED)|    () [1,3)\n      2 (CLOSED)|    ()\n```\n\n```python\n>>> poly = rp.rclosedopen(2, 5, 1, 4) | rp.rclosedopen(1, 8, 2, 3) | rp.rclosedopen(6, 8, 1, 3)\n>>> poly = poly - rp.rclosedopen(4, 7, 2, 4)\n>>> print(data_tree_to_string(poly._x_boundaries, poly._used_y_ranges, 6))\n                |  +inf     8     7     6     5     4     2     1\n----------------+------------------------------------------------\n     -inf (OPEN)|    ()    ()    ()    ()    ()    ()    ()    ()\n      1 (CLOSED)|    ()    ()    ()    ()    () [2,3) [2,3)\n      2 (CLOSED)|    ()    ()    ()    () [1,2) [1,4)\n      4 (CLOSED)|    ()    ()    ()    () [1,2)\n      5 (CLOSED)|    ()    ()    ()    ()\n      6 (CLOSED)|    () [1,2) [1,2)\n      7 (CLOSED)|    () [1,3)\n```\n\n```python\ndef data_tree_to_string(x_boundaries,\n                        y_intervals,\n                        spacing: int):\n    col_space = 10\n    n = len(y_intervals)\n    msg = \" \" * (spacing + col_space) + \"|\"\n    for x_b in x_boundaries[-1:0:-1]:\n        msg += f\"{str(x_b.val):>{spacing}}\"\n    msg += \"\\n\" + f\"-\" * (spacing+col_space) + \"+\"\n    for i in range(n):\n        msg += f\"-\" * spacing\n    msg += \"\\n\"\n    for i, row in enumerate(y_intervals):\n        x_b = x_boundaries[i]\n        msg += f\"{str((~x_b).val) + ' (' + str((~x_b).btype) + ')':>{spacing+ col_space}}|\"\n        for val in row:\n            msg += f\"{str(val):>{spacing}}\"\n        msg += \"\\n\"\n    return msg\n```\n\n[&uparrow; back to top](#table-of-contents)\n## Changelog\nThis library adheres to a [semantic versioning](https://semver.org/) scheme.\nSee [CHANGELOG.md](https://github.com/tilmann-bartsch/rportion/blob/master/CHANGELOG.md) for the list of changes.\n\n## Contributions\nContributions are very welcome! Feel free to report bugs or suggest new features using GitHub issues and/or pull requests.\n\n## License\nDistributed under [MIT License](https://github.com/tilmann-bartsch/rportion/blob/master/LICENSE).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python data structure and operations for 2-dimensional rectilinear polygons",
    "version": "0.2.0",
    "project_urls": {
        "Homepage": "https://github.com/tilmann-bartsch/rportion"
    },
    "split_keywords": [
        "rectangle",
        "polygon",
        "interval-tree"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e6bba87d3cdaec835f4fe71b70dadeffa85f4b82e833449bcbc32c412c37cff6",
                "md5": "bfe8e9941b1b14c2832c9d96e8e8dfbc",
                "sha256": "f68ea45bfeac8ba1a655dcdf2d5551f803c140900471f95fcf883e6db1ed6076"
            },
            "downloads": -1,
            "filename": "rportion-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bfe8e9941b1b14c2832c9d96e8e8dfbc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 11973,
            "upload_time": "2024-04-02T12:25:13",
            "upload_time_iso_8601": "2024-04-02T12:25:13.276380Z",
            "url": "https://files.pythonhosted.org/packages/e6/bb/a87d3cdaec835f4fe71b70dadeffa85f4b82e833449bcbc32c412c37cff6/rportion-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "813cab8c1ad3c2f4615800a4afe27715350c912da36c92d69dddabbee916cd06",
                "md5": "ed8788a4cfbfb19f742d6bffe477667a",
                "sha256": "c7fd6c2b46c904fcf38cdb7505b69efdc7c4423ac973149b5eaad51b92ae5848"
            },
            "downloads": -1,
            "filename": "rportion-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "ed8788a4cfbfb19f742d6bffe477667a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 21090,
            "upload_time": "2024-04-02T12:25:14",
            "upload_time_iso_8601": "2024-04-02T12:25:14.808345Z",
            "url": "https://files.pythonhosted.org/packages/81/3c/ab8c1ad3c2f4615800a4afe27715350c912da36c92d69dddabbee916cd06/rportion-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-02 12:25:14",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tilmann-bartsch",
    "github_project": "rportion",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "rportion"
}
        
Elapsed time: 0.24406s