rsl-rl-lib


Namersl-rl-lib JSON
Version 2.1.2 PyPI version JSON
download
home_pageNone
SummaryFast and simple RL algorithms implemented in PyTorch
upload_time2025-02-07 23:25:09
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseBSD-3-Clause
keywords reinforcement-learning isaac leggedrobotics rl-pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # RSL RL

Fast and simple implementation of RL algorithms, designed to run fully on GPU.
This code is an evolution of `rl-pytorch` provided with NVIDIA's Isaac GYM.

| The `algorithms` branch supports additional algorithms (SAC, DDPG, DSAC, and more)! |
| ----------------------------------------------------------------------------------- |

The main branch only supports PPO for now.
Contributions are welcome.

**Maintainer**: Mayank Mittal and Clemens Schwarke <br/>
**Affiliation**: Robotic Systems Lab, ETH Zurich & NVIDIA <br/>
**Contact**: cschwarke@ethz.ch

## Setup

The package can be installed via PyPI with:

```bash
pip install rsl-rl-lib
```

or by cloning this repository and installing it with:

```bash
git clone https://github.com/leggedrobotics/rsl_rl
cd rsl_rl
pip install -e .
```

The package supports the following logging frameworks which can be configured through `logger`:

* Tensorboard: https://www.tensorflow.org/tensorboard/
* Weights & Biases: https://wandb.ai/site
* Neptune: https://docs.neptune.ai/

For a demo configuration of PPO, please check the [dummy_config.yaml](config/dummy_config.yaml) file.


## Contribution Guidelines

For documentation, we adopt the [Google Style Guide](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) for docstrings. Please make sure that your code is well-documented and follows the guidelines.

We use the following tools for maintaining code quality:

- [pre-commit](https://pre-commit.com/): Runs a list of formatters and linters over the codebase.
- [black](https://black.readthedocs.io/en/stable/): The uncompromising code formatter.
- [flake8](https://flake8.pycqa.org/en/latest/): A wrapper around PyFlakes, pycodestyle, and McCabe complexity checker.

Please check [here](https://pre-commit.com/#install) for instructions to set these up. To run over the entire repository, please execute the following command in the terminal:


```bash
# for installation (only once)
pre-commit install
# for running
pre-commit run --all-files
```

## Useful Links

Environment repositories using the framework:

* `Isaac Lab` (built on top of NVIDIA Isaac Sim): https://github.com/isaac-sim/IsaacLab
* `Legged-Gym` (built on top of NVIDIA Isaac Gym): https://leggedrobotics.github.io/legged_gym/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "rsl-rl-lib",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "Clemens Schwarke <cschwarke@ethz.ch>, Mayank Mittal <mittalma@ethz.ch>",
    "keywords": "reinforcement-learning, isaac, leggedrobotics, rl-pytorch",
    "author": null,
    "author_email": "Clemens Schwarke <cschwarke@ethz.ch>, Mayank Mittal <mittalma@ethz.ch>, Nikita Rudin <rudinn@ethz.ch>, David Hoeller <holler.david78@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/9b/69/a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345/rsl_rl_lib-2.1.2.tar.gz",
    "platform": null,
    "description": "# RSL RL\n\nFast and simple implementation of RL algorithms, designed to run fully on GPU.\nThis code is an evolution of `rl-pytorch` provided with NVIDIA's Isaac GYM.\n\n| The `algorithms` branch supports additional algorithms (SAC, DDPG, DSAC, and more)! |\n| ----------------------------------------------------------------------------------- |\n\nThe main branch only supports PPO for now.\nContributions are welcome.\n\n**Maintainer**: Mayank Mittal and Clemens Schwarke <br/>\n**Affiliation**: Robotic Systems Lab, ETH Zurich & NVIDIA <br/>\n**Contact**: cschwarke@ethz.ch\n\n## Setup\n\nThe package can be installed via PyPI with:\n\n```bash\npip install rsl-rl-lib\n```\n\nor by cloning this repository and installing it with:\n\n```bash\ngit clone https://github.com/leggedrobotics/rsl_rl\ncd rsl_rl\npip install -e .\n```\n\nThe package supports the following logging frameworks which can be configured through `logger`:\n\n* Tensorboard: https://www.tensorflow.org/tensorboard/\n* Weights & Biases: https://wandb.ai/site\n* Neptune: https://docs.neptune.ai/\n\nFor a demo configuration of PPO, please check the [dummy_config.yaml](config/dummy_config.yaml) file.\n\n\n## Contribution Guidelines\n\nFor documentation, we adopt the [Google Style Guide](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) for docstrings. Please make sure that your code is well-documented and follows the guidelines.\n\nWe use the following tools for maintaining code quality:\n\n- [pre-commit](https://pre-commit.com/): Runs a list of formatters and linters over the codebase.\n- [black](https://black.readthedocs.io/en/stable/): The uncompromising code formatter.\n- [flake8](https://flake8.pycqa.org/en/latest/): A wrapper around PyFlakes, pycodestyle, and McCabe complexity checker.\n\nPlease check [here](https://pre-commit.com/#install) for instructions to set these up. To run over the entire repository, please execute the following command in the terminal:\n\n\n```bash\n# for installation (only once)\npre-commit install\n# for running\npre-commit run --all-files\n```\n\n## Useful Links\n\nEnvironment repositories using the framework:\n\n* `Isaac Lab` (built on top of NVIDIA Isaac Sim): https://github.com/isaac-sim/IsaacLab\n* `Legged-Gym` (built on top of NVIDIA Isaac Gym): https://leggedrobotics.github.io/legged_gym/\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Fast and simple RL algorithms implemented in PyTorch",
    "version": "2.1.2",
    "project_urls": {
        "Homepage": "https://github.com/leggedrobotics/rsl_rl",
        "Issues": "https://github.com/leggedrobotics/rsl_rl/issues"
    },
    "split_keywords": [
        "reinforcement-learning",
        " isaac",
        " leggedrobotics",
        " rl-pytorch"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "74207ab6b91da6df004011fc8ae4040cdb431076d9446577168c933771ef71ee",
                "md5": "fde9f3dcbdf109d16422e1b985854e24",
                "sha256": "3d9f441940a010c3e23af21712a8068ddb816d1159f7de7894cb4c726d9c3945"
            },
            "downloads": -1,
            "filename": "rsl_rl_lib-2.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fde9f3dcbdf109d16422e1b985854e24",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 23557,
            "upload_time": "2025-02-07T23:25:08",
            "upload_time_iso_8601": "2025-02-07T23:25:08.160433Z",
            "url": "https://files.pythonhosted.org/packages/74/20/7ab6b91da6df004011fc8ae4040cdb431076d9446577168c933771ef71ee/rsl_rl_lib-2.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "9b69a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345",
                "md5": "03847baef6b8f4d2934d44f9e2602e16",
                "sha256": "223f53a1764a9ba64d4386fd65a52cc932317b0d2c774c01e1cdb8f9abb7dfd4"
            },
            "downloads": -1,
            "filename": "rsl_rl_lib-2.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "03847baef6b8f4d2934d44f9e2602e16",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 19290,
            "upload_time": "2025-02-07T23:25:09",
            "upload_time_iso_8601": "2025-02-07T23:25:09.924436Z",
            "url": "https://files.pythonhosted.org/packages/9b/69/a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345/rsl_rl_lib-2.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-07 23:25:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "leggedrobotics",
    "github_project": "rsl_rl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "rsl-rl-lib"
}
        
Elapsed time: 0.38318s