# RSL RL
Fast and simple implementation of RL algorithms, designed to run fully on GPU.
This code is an evolution of `rl-pytorch` provided with NVIDIA's Isaac GYM.
| The `algorithms` branch supports additional algorithms (SAC, DDPG, DSAC, and more)! |
| ----------------------------------------------------------------------------------- |
The main branch only supports PPO for now.
Contributions are welcome.
**Maintainer**: Mayank Mittal and Clemens Schwarke <br/>
**Affiliation**: Robotic Systems Lab, ETH Zurich & NVIDIA <br/>
**Contact**: cschwarke@ethz.ch
## Setup
The package can be installed via PyPI with:
```bash
pip install rsl-rl-lib
```
or by cloning this repository and installing it with:
```bash
git clone https://github.com/leggedrobotics/rsl_rl
cd rsl_rl
pip install -e .
```
The package supports the following logging frameworks which can be configured through `logger`:
* Tensorboard: https://www.tensorflow.org/tensorboard/
* Weights & Biases: https://wandb.ai/site
* Neptune: https://docs.neptune.ai/
For a demo configuration of PPO, please check the [dummy_config.yaml](config/dummy_config.yaml) file.
## Contribution Guidelines
For documentation, we adopt the [Google Style Guide](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) for docstrings. Please make sure that your code is well-documented and follows the guidelines.
We use the following tools for maintaining code quality:
- [pre-commit](https://pre-commit.com/): Runs a list of formatters and linters over the codebase.
- [black](https://black.readthedocs.io/en/stable/): The uncompromising code formatter.
- [flake8](https://flake8.pycqa.org/en/latest/): A wrapper around PyFlakes, pycodestyle, and McCabe complexity checker.
Please check [here](https://pre-commit.com/#install) for instructions to set these up. To run over the entire repository, please execute the following command in the terminal:
```bash
# for installation (only once)
pre-commit install
# for running
pre-commit run --all-files
```
## Useful Links
Environment repositories using the framework:
* `Isaac Lab` (built on top of NVIDIA Isaac Sim): https://github.com/isaac-sim/IsaacLab
* `Legged-Gym` (built on top of NVIDIA Isaac Gym): https://leggedrobotics.github.io/legged_gym/
Raw data
{
"_id": null,
"home_page": null,
"name": "rsl-rl-lib",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "Clemens Schwarke <cschwarke@ethz.ch>, Mayank Mittal <mittalma@ethz.ch>",
"keywords": "reinforcement-learning, isaac, leggedrobotics, rl-pytorch",
"author": null,
"author_email": "Clemens Schwarke <cschwarke@ethz.ch>, Mayank Mittal <mittalma@ethz.ch>, Nikita Rudin <rudinn@ethz.ch>, David Hoeller <holler.david78@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/9b/69/a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345/rsl_rl_lib-2.1.2.tar.gz",
"platform": null,
"description": "# RSL RL\n\nFast and simple implementation of RL algorithms, designed to run fully on GPU.\nThis code is an evolution of `rl-pytorch` provided with NVIDIA's Isaac GYM.\n\n| The `algorithms` branch supports additional algorithms (SAC, DDPG, DSAC, and more)! |\n| ----------------------------------------------------------------------------------- |\n\nThe main branch only supports PPO for now.\nContributions are welcome.\n\n**Maintainer**: Mayank Mittal and Clemens Schwarke <br/>\n**Affiliation**: Robotic Systems Lab, ETH Zurich & NVIDIA <br/>\n**Contact**: cschwarke@ethz.ch\n\n## Setup\n\nThe package can be installed via PyPI with:\n\n```bash\npip install rsl-rl-lib\n```\n\nor by cloning this repository and installing it with:\n\n```bash\ngit clone https://github.com/leggedrobotics/rsl_rl\ncd rsl_rl\npip install -e .\n```\n\nThe package supports the following logging frameworks which can be configured through `logger`:\n\n* Tensorboard: https://www.tensorflow.org/tensorboard/\n* Weights & Biases: https://wandb.ai/site\n* Neptune: https://docs.neptune.ai/\n\nFor a demo configuration of PPO, please check the [dummy_config.yaml](config/dummy_config.yaml) file.\n\n\n## Contribution Guidelines\n\nFor documentation, we adopt the [Google Style Guide](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) for docstrings. Please make sure that your code is well-documented and follows the guidelines.\n\nWe use the following tools for maintaining code quality:\n\n- [pre-commit](https://pre-commit.com/): Runs a list of formatters and linters over the codebase.\n- [black](https://black.readthedocs.io/en/stable/): The uncompromising code formatter.\n- [flake8](https://flake8.pycqa.org/en/latest/): A wrapper around PyFlakes, pycodestyle, and McCabe complexity checker.\n\nPlease check [here](https://pre-commit.com/#install) for instructions to set these up. To run over the entire repository, please execute the following command in the terminal:\n\n\n```bash\n# for installation (only once)\npre-commit install\n# for running\npre-commit run --all-files\n```\n\n## Useful Links\n\nEnvironment repositories using the framework:\n\n* `Isaac Lab` (built on top of NVIDIA Isaac Sim): https://github.com/isaac-sim/IsaacLab\n* `Legged-Gym` (built on top of NVIDIA Isaac Gym): https://leggedrobotics.github.io/legged_gym/\n",
"bugtrack_url": null,
"license": "BSD-3-Clause",
"summary": "Fast and simple RL algorithms implemented in PyTorch",
"version": "2.1.2",
"project_urls": {
"Homepage": "https://github.com/leggedrobotics/rsl_rl",
"Issues": "https://github.com/leggedrobotics/rsl_rl/issues"
},
"split_keywords": [
"reinforcement-learning",
" isaac",
" leggedrobotics",
" rl-pytorch"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "74207ab6b91da6df004011fc8ae4040cdb431076d9446577168c933771ef71ee",
"md5": "fde9f3dcbdf109d16422e1b985854e24",
"sha256": "3d9f441940a010c3e23af21712a8068ddb816d1159f7de7894cb4c726d9c3945"
},
"downloads": -1,
"filename": "rsl_rl_lib-2.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "fde9f3dcbdf109d16422e1b985854e24",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 23557,
"upload_time": "2025-02-07T23:25:08",
"upload_time_iso_8601": "2025-02-07T23:25:08.160433Z",
"url": "https://files.pythonhosted.org/packages/74/20/7ab6b91da6df004011fc8ae4040cdb431076d9446577168c933771ef71ee/rsl_rl_lib-2.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9b69a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345",
"md5": "03847baef6b8f4d2934d44f9e2602e16",
"sha256": "223f53a1764a9ba64d4386fd65a52cc932317b0d2c774c01e1cdb8f9abb7dfd4"
},
"downloads": -1,
"filename": "rsl_rl_lib-2.1.2.tar.gz",
"has_sig": false,
"md5_digest": "03847baef6b8f4d2934d44f9e2602e16",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 19290,
"upload_time": "2025-02-07T23:25:09",
"upload_time_iso_8601": "2025-02-07T23:25:09.924436Z",
"url": "https://files.pythonhosted.org/packages/9b/69/a582f93a3d6028b60cc9db6424081344120247cb6d0b7150e9cd41e7c345/rsl_rl_lib-2.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-07 23:25:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "leggedrobotics",
"github_project": "rsl_rl",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "rsl-rl-lib"
}