rsspolymlp


Namersspolymlp JSON
Version 0.2.0 PyPI version JSON
download
home_pageNone
SummaryA framework for random structure search using polynomial MLPs
upload_time2025-07-14 14:18:33
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # A framework for random structure search (RSS) using polynomial MLPs

## Citation of rsspolymlp

If you use `rsspolymlp` in your study, please cite the following articles.

“Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system”, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)
```
@article{HayatoWakai202323053,
  title="{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system}",
  author={Hayato Wakai and Atsuto Seko and Isao Tanaka},
  journal={J. Ceram. Soc. Jpn.},
  volume={131},
  number={10},
  pages={762-766},
  year={2023},
  doi={10.2109/jcersj2.23053}
}
```

## Installation

### Required libraries and python modules

- python >= 3.9
- scikit-learn
- joblib
- pypolymlp
- spglib
- symfc

[Optional]
- matplotlib (if plotting RSS results)
- seaborn (if plotting RSS results)

### How to install
- Install from conda-forge

| Name | Downloads | Version | Platforms |
| --- | --- | --- | --- |
| [![Conda Recipe](https://img.shields.io/badge/recipe-rsspolymlp-green.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Version](https://img.shields.io/conda/vn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) |

```shell
conda create -n rsspolymlp
conda activate rsspolymlp
conda install -c conda-forge rsspolymlp
```

- Install from PyPI
```shell
conda create -n rsspolymlp
conda activate rsspolymlp
conda install -c conda-forge scikit-learn joblib pypolymlp spglib symfc
pip install rsspolymlp
```

## How to use rsspolymlp

 - [Workflow of RSS with polynomial MLPs](docs/rsspolymlp.md)
   - Initial structure generation
   - Global RSS with polynomial MLPs
   - Unique structure identification and RSS result summarization
   - Ghost minimum structure elimination
   - Phase stability analysis
 - [Development kit for polynomial MLPs](docs/rsspolymlp_devkit.md)
   - MLP dataset generation
   - DFT dataset division
   - Polynomial MLP development
   - Pareto-optimal MLP detection
 - [Python API for RSS](docs/api_rsspolymlp.md)
 - [VASP calculation utilities](src/rsspolymlp/utils/vasp_util/readme.md)
   - Single-point calculation
   - Local geometry optimizaion
 - [Matplotlib utilities](src/rsspolymlp/utils/matplot_util/readme.md)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "rsspolymlp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "Hayato Wakai <wakai@cms.mtl.kyoto-u.ac.jp>",
    "keywords": null,
    "author": null,
    "author_email": "Hayato Wakai <wakai@cms.mtl.kyoto-u.ac.jp>",
    "download_url": "https://files.pythonhosted.org/packages/f2/e8/8f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe/rsspolymlp-0.2.0.tar.gz",
    "platform": null,
    "description": "# A framework for random structure search (RSS) using polynomial MLPs\n\n## Citation of rsspolymlp\n\nIf you use `rsspolymlp` in your study, please cite the following articles.\n\n\u201cEfficient global crystal structure prediction using polynomial machine learning potential in the binary Al\u2013Cu alloy system\u201d, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)\n```\n@article{HayatoWakai202323053,\n  title=\"{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al\u2013Cu alloy system}\",\n  author={Hayato Wakai and Atsuto Seko and Isao Tanaka},\n  journal={J. Ceram. Soc. Jpn.},\n  volume={131},\n  number={10},\n  pages={762-766},\n  year={2023},\n  doi={10.2109/jcersj2.23053}\n}\n```\n\n## Installation\n\n### Required libraries and python modules\n\n- python >= 3.9\n- scikit-learn\n- joblib\n- pypolymlp\n- spglib\n- symfc\n\n[Optional]\n- matplotlib (if plotting RSS results)\n- seaborn (if plotting RSS results)\n\n### How to install\n- Install from conda-forge\n\n| Name | Downloads | Version | Platforms |\n| --- | --- | --- | --- |\n| [![Conda Recipe](https://img.shields.io/badge/recipe-rsspolymlp-green.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Version](https://img.shields.io/conda/vn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) | [![Conda Platforms](https://img.shields.io/conda/pn/conda-forge/rsspolymlp.svg)](https://anaconda.org/conda-forge/rsspolymlp) |\n\n```shell\nconda create -n rsspolymlp\nconda activate rsspolymlp\nconda install -c conda-forge rsspolymlp\n```\n\n- Install from PyPI\n```shell\nconda create -n rsspolymlp\nconda activate rsspolymlp\nconda install -c conda-forge scikit-learn joblib pypolymlp spglib symfc\npip install rsspolymlp\n```\n\n## How to use rsspolymlp\n\n - [Workflow of RSS with polynomial MLPs](docs/rsspolymlp.md)\n   - Initial structure generation\n   - Global RSS with polynomial MLPs\n   - Unique structure identification and RSS result summarization\n   - Ghost minimum structure elimination\n   - Phase stability analysis\n - [Development kit for polynomial MLPs](docs/rsspolymlp_devkit.md)\n   - MLP dataset generation\n   - DFT dataset division\n   - Polynomial MLP development\n   - Pareto-optimal MLP detection\n - [Python API for RSS](docs/api_rsspolymlp.md)\n - [VASP calculation utilities](src/rsspolymlp/utils/vasp_util/readme.md)\n   - Single-point calculation\n   - Local geometry optimizaion\n - [Matplotlib utilities](src/rsspolymlp/utils/matplot_util/readme.md)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A framework for random structure search using polynomial MLPs",
    "version": "0.2.0",
    "project_urls": {
        "homepage": "https://github.com/hytwakai/rsspolymlp",
        "repository": "https://github.com/hytwakai/rsspolymlp"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f2e88f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe",
                "md5": "d693104782f175ce3f8aca49514468a8",
                "sha256": "6cb5504fa2cc6052dcabfb0bf59a5483c8354b0509add1d505403d32d8b9760e"
            },
            "downloads": -1,
            "filename": "rsspolymlp-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "d693104782f175ce3f8aca49514468a8",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 65323,
            "upload_time": "2025-07-14T14:18:33",
            "upload_time_iso_8601": "2025-07-14T14:18:33.082144Z",
            "url": "https://files.pythonhosted.org/packages/f2/e8/8f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe/rsspolymlp-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-14 14:18:33",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "hytwakai",
    "github_project": "rsspolymlp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "rsspolymlp"
}
        
Elapsed time: 1.85389s