Name | rsspolymlp JSON |
Version |
0.2.0
JSON |
| download |
home_page | None |
Summary | A framework for random structure search using polynomial MLPs |
upload_time | 2025-07-14 14:18:33 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | None |
keywords |
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# A framework for random structure search (RSS) using polynomial MLPs
## Citation of rsspolymlp
If you use `rsspolymlp` in your study, please cite the following articles.
“Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system”, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)
```
@article{HayatoWakai202323053,
title="{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al–Cu alloy system}",
author={Hayato Wakai and Atsuto Seko and Isao Tanaka},
journal={J. Ceram. Soc. Jpn.},
volume={131},
number={10},
pages={762-766},
year={2023},
doi={10.2109/jcersj2.23053}
}
```
## Installation
### Required libraries and python modules
- python >= 3.9
- scikit-learn
- joblib
- pypolymlp
- spglib
- symfc
[Optional]
- matplotlib (if plotting RSS results)
- seaborn (if plotting RSS results)
### How to install
- Install from conda-forge
| Name | Downloads | Version | Platforms |
| --- | --- | --- | --- |
| [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) |
```shell
conda create -n rsspolymlp
conda activate rsspolymlp
conda install -c conda-forge rsspolymlp
```
- Install from PyPI
```shell
conda create -n rsspolymlp
conda activate rsspolymlp
conda install -c conda-forge scikit-learn joblib pypolymlp spglib symfc
pip install rsspolymlp
```
## How to use rsspolymlp
- [Workflow of RSS with polynomial MLPs](docs/rsspolymlp.md)
- Initial structure generation
- Global RSS with polynomial MLPs
- Unique structure identification and RSS result summarization
- Ghost minimum structure elimination
- Phase stability analysis
- [Development kit for polynomial MLPs](docs/rsspolymlp_devkit.md)
- MLP dataset generation
- DFT dataset division
- Polynomial MLP development
- Pareto-optimal MLP detection
- [Python API for RSS](docs/api_rsspolymlp.md)
- [VASP calculation utilities](src/rsspolymlp/utils/vasp_util/readme.md)
- Single-point calculation
- Local geometry optimizaion
- [Matplotlib utilities](src/rsspolymlp/utils/matplot_util/readme.md)
Raw data
{
"_id": null,
"home_page": null,
"name": "rsspolymlp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "Hayato Wakai <wakai@cms.mtl.kyoto-u.ac.jp>",
"keywords": null,
"author": null,
"author_email": "Hayato Wakai <wakai@cms.mtl.kyoto-u.ac.jp>",
"download_url": "https://files.pythonhosted.org/packages/f2/e8/8f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe/rsspolymlp-0.2.0.tar.gz",
"platform": null,
"description": "# A framework for random structure search (RSS) using polynomial MLPs\n\n## Citation of rsspolymlp\n\nIf you use `rsspolymlp` in your study, please cite the following articles.\n\n\u201cEfficient global crystal structure prediction using polynomial machine learning potential in the binary Al\u2013Cu alloy system\u201d, [J. Ceram. Soc. Jpn. 131, 762 (2023)](https://www.jstage.jst.go.jp/article/jcersj2/131/10/131_23053/_article/-char/ja/)\n```\n@article{HayatoWakai202323053,\n title=\"{Efficient global crystal structure prediction using polynomial machine learning potential in the binary Al\u2013Cu alloy system}\",\n author={Hayato Wakai and Atsuto Seko and Isao Tanaka},\n journal={J. Ceram. Soc. Jpn.},\n volume={131},\n number={10},\n pages={762-766},\n year={2023},\n doi={10.2109/jcersj2.23053}\n}\n```\n\n## Installation\n\n### Required libraries and python modules\n\n- python >= 3.9\n- scikit-learn\n- joblib\n- pypolymlp\n- spglib\n- symfc\n\n[Optional]\n- matplotlib (if plotting RSS results)\n- seaborn (if plotting RSS results)\n\n### How to install\n- Install from conda-forge\n\n| Name | Downloads | Version | Platforms |\n| --- | --- | --- | --- |\n| [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) | [](https://anaconda.org/conda-forge/rsspolymlp) |\n\n```shell\nconda create -n rsspolymlp\nconda activate rsspolymlp\nconda install -c conda-forge rsspolymlp\n```\n\n- Install from PyPI\n```shell\nconda create -n rsspolymlp\nconda activate rsspolymlp\nconda install -c conda-forge scikit-learn joblib pypolymlp spglib symfc\npip install rsspolymlp\n```\n\n## How to use rsspolymlp\n\n - [Workflow of RSS with polynomial MLPs](docs/rsspolymlp.md)\n - Initial structure generation\n - Global RSS with polynomial MLPs\n - Unique structure identification and RSS result summarization\n - Ghost minimum structure elimination\n - Phase stability analysis\n - [Development kit for polynomial MLPs](docs/rsspolymlp_devkit.md)\n - MLP dataset generation\n - DFT dataset division\n - Polynomial MLP development\n - Pareto-optimal MLP detection\n - [Python API for RSS](docs/api_rsspolymlp.md)\n - [VASP calculation utilities](src/rsspolymlp/utils/vasp_util/readme.md)\n - Single-point calculation\n - Local geometry optimizaion\n - [Matplotlib utilities](src/rsspolymlp/utils/matplot_util/readme.md)\n",
"bugtrack_url": null,
"license": null,
"summary": "A framework for random structure search using polynomial MLPs",
"version": "0.2.0",
"project_urls": {
"homepage": "https://github.com/hytwakai/rsspolymlp",
"repository": "https://github.com/hytwakai/rsspolymlp"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f2e88f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe",
"md5": "d693104782f175ce3f8aca49514468a8",
"sha256": "6cb5504fa2cc6052dcabfb0bf59a5483c8354b0509add1d505403d32d8b9760e"
},
"downloads": -1,
"filename": "rsspolymlp-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "d693104782f175ce3f8aca49514468a8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 65323,
"upload_time": "2025-07-14T14:18:33",
"upload_time_iso_8601": "2025-07-14T14:18:33.082144Z",
"url": "https://files.pythonhosted.org/packages/f2/e8/8f5ac0e4b96faa44ab828375b56f85d1bc150ffc83cfba14085a58aa4cbe/rsspolymlp-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-14 14:18:33",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "hytwakai",
"github_project": "rsspolymlp",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "rsspolymlp"
}