sae-lens


Namesae-lens JSON
Version 5.10.7 PyPI version JSON
download
home_pageNone
SummaryTraining and Analyzing Sparse Autoencoders (SAEs)
upload_time2025-06-10 19:54:20
maintainerNone
docs_urlNone
authorJoseph Bloom
requires_python<4.0,>=3.10
licenseMIT
keywords deep-learning sparse-autoencoders mechanistic-interpretability pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img width="1308" alt="Screenshot 2024-03-21 at 3 08 28 pm" src="https://github.com/jbloomAus/mats_sae_training/assets/69127271/209012ec-a779-4036-b4be-7b7739ea87f6">

# SAE Lens

[![PyPI](https://img.shields.io/pypi/v/sae-lens?color=blue)](https://pypi.org/project/sae-lens/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![build](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml)
[![Deploy Docs](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml)
[![codecov](https://codecov.io/gh/jbloomAus/SAELens/graph/badge.svg?token=N83NGH8CGE)](https://codecov.io/gh/jbloomAus/SAELens)

SAELens exists to help researchers:

- Train sparse autoencoders.
- Analyse sparse autoencoders / research mechanistic interpretability.
- Generate insights which make it easier to create safe and aligned AI systems.

Please refer to the [documentation](https://jbloomaus.github.io/SAELens/) for information on how to:

- Download and Analyse pre-trained sparse autoencoders.
- Train your own sparse autoencoders.
- Generate feature dashboards with the [SAE-Vis Library](https://github.com/callummcdougall/sae_vis/tree/main).

SAE Lens is the result of many contributors working collectively to improve humanity's understanding of neural networks, many of whom are motivated by a desire to [safeguard humanity from risks posed by artificial intelligence](https://80000hours.org/problem-profiles/artificial-intelligence/).

This library is maintained by [Joseph Bloom](https://www.jbloomaus.com/), [Curt Tigges](https://curttigges.com/), [Anthony Duong](https://github.com/anthonyduong9) and [David Chanin](https://github.com/chanind).

## Loading Pre-trained SAEs.

Pre-trained SAEs for various models can be imported via SAE Lens. See this [page](https://jbloomaus.github.io/SAELens/sae_table/) in the readme for a list of all SAEs.

## Tutorials

- [SAE Lens + Neuronpedia](tutorials/tutorial_2_0.ipynb)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/tutorial_2_0.ipynb)
- [Loading and Analysing Pre-Trained Sparse Autoencoders](tutorials/basic_loading_and_analysing.ipynb)
  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/basic_loading_and_analysing.ipynb)
- [Understanding SAE Features with the Logit Lens](tutorials/logits_lens_with_features.ipynb)
  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/logits_lens_with_features.ipynb)
- [Training a Sparse Autoencoder](tutorials/training_a_sparse_autoencoder.ipynb)
  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/training_a_sparse_autoencoder.ipynb)

## Join the Slack!

Feel free to join the [Open Source Mechanistic Interpretability Slack](https://join.slack.com/t/opensourcemechanistic/shared_invite/zt-375zalm04-GFd5tdBU1yLKlu_T_JSqZQ) for support!

## Citation

Please cite the package as follows:

```
@misc{bloom2024saetrainingcodebase,
   title = {SAELens},
   author = {Bloom, Joseph and Tigges, Curt and Duong, Anthony and Chanin, David},
   year = {2024},
   howpublished = {\url{https://github.com/jbloomAus/SAELens}},
}
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sae-lens",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "deep-learning, sparse-autoencoders, mechanistic-interpretability, PyTorch",
    "author": "Joseph Bloom",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/c8/63/94f820c59ccde7a0e64f1202cfe42b054d6e70d6b63c5243a0d359242dd3/sae_lens-5.10.7.tar.gz",
    "platform": null,
    "description": "<img width=\"1308\" alt=\"Screenshot 2024-03-21 at 3 08 28\u202fpm\" src=\"https://github.com/jbloomAus/mats_sae_training/assets/69127271/209012ec-a779-4036-b4be-7b7739ea87f6\">\n\n# SAE Lens\n\n[![PyPI](https://img.shields.io/pypi/v/sae-lens?color=blue)](https://pypi.org/project/sae-lens/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![build](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml)\n[![Deploy Docs](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml)\n[![codecov](https://codecov.io/gh/jbloomAus/SAELens/graph/badge.svg?token=N83NGH8CGE)](https://codecov.io/gh/jbloomAus/SAELens)\n\nSAELens exists to help researchers:\n\n- Train sparse autoencoders.\n- Analyse sparse autoencoders / research mechanistic interpretability.\n- Generate insights which make it easier to create safe and aligned AI systems.\n\nPlease refer to the [documentation](https://jbloomaus.github.io/SAELens/) for information on how to:\n\n- Download and Analyse pre-trained sparse autoencoders.\n- Train your own sparse autoencoders.\n- Generate feature dashboards with the [SAE-Vis Library](https://github.com/callummcdougall/sae_vis/tree/main).\n\nSAE Lens is the result of many contributors working collectively to improve humanity's understanding of neural networks, many of whom are motivated by a desire to [safeguard humanity from risks posed by artificial intelligence](https://80000hours.org/problem-profiles/artificial-intelligence/).\n\nThis library is maintained by [Joseph Bloom](https://www.jbloomaus.com/), [Curt Tigges](https://curttigges.com/), [Anthony Duong](https://github.com/anthonyduong9) and [David Chanin](https://github.com/chanind).\n\n## Loading Pre-trained SAEs.\n\nPre-trained SAEs for various models can be imported via SAE Lens. See this [page](https://jbloomaus.github.io/SAELens/sae_table/) in the readme for a list of all SAEs.\n\n## Tutorials\n\n- [SAE Lens + Neuronpedia](tutorials/tutorial_2_0.ipynb)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/tutorial_2_0.ipynb)\n- [Loading and Analysing Pre-Trained Sparse Autoencoders](tutorials/basic_loading_and_analysing.ipynb)\n  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/basic_loading_and_analysing.ipynb)\n- [Understanding SAE Features with the Logit Lens](tutorials/logits_lens_with_features.ipynb)\n  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/logits_lens_with_features.ipynb)\n- [Training a Sparse Autoencoder](tutorials/training_a_sparse_autoencoder.ipynb)\n  [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/training_a_sparse_autoencoder.ipynb)\n\n## Join the Slack!\n\nFeel free to join the [Open Source Mechanistic Interpretability Slack](https://join.slack.com/t/opensourcemechanistic/shared_invite/zt-375zalm04-GFd5tdBU1yLKlu_T_JSqZQ) for support!\n\n## Citation\n\nPlease cite the package as follows:\n\n```\n@misc{bloom2024saetrainingcodebase,\n   title = {SAELens},\n   author = {Bloom, Joseph and Tigges, Curt and Duong, Anthony and Chanin, David},\n   year = {2024},\n   howpublished = {\\url{https://github.com/jbloomAus/SAELens}},\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Training and Analyzing Sparse Autoencoders (SAEs)",
    "version": "5.10.7",
    "project_urls": {
        "Homepage": "https://jbloomaus.github.io/SAELens",
        "Repository": "https://github.com/jbloomAus/SAELens"
    },
    "split_keywords": [
        "deep-learning",
        " sparse-autoencoders",
        " mechanistic-interpretability",
        " pytorch"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d3b9939f7e72d4324e2b8cf13d91e0e029fd2ad16814d91d4bb525e230a47a05",
                "md5": "b75370a4391879c39cc2fa0fdabffa73",
                "sha256": "8d7737d32a7a6756759c7c316d72678f302a535610fe6f4925cc6c2f5877ca97"
            },
            "downloads": -1,
            "filename": "sae_lens-5.10.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b75370a4391879c39cc2fa0fdabffa73",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 131431,
            "upload_time": "2025-06-10T19:54:18",
            "upload_time_iso_8601": "2025-06-10T19:54:18.731128Z",
            "url": "https://files.pythonhosted.org/packages/d3/b9/939f7e72d4324e2b8cf13d91e0e029fd2ad16814d91d4bb525e230a47a05/sae_lens-5.10.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c86394f820c59ccde7a0e64f1202cfe42b054d6e70d6b63c5243a0d359242dd3",
                "md5": "2ed7f4ebd2bce83d0229f355d460a3ba",
                "sha256": "e1878a32581078ae6a3b0151269696b61f70572f672a10f719707b880ac7c4b3"
            },
            "downloads": -1,
            "filename": "sae_lens-5.10.7.tar.gz",
            "has_sig": false,
            "md5_digest": "2ed7f4ebd2bce83d0229f355d460a3ba",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 123547,
            "upload_time": "2025-06-10T19:54:20",
            "upload_time_iso_8601": "2025-06-10T19:54:20.568967Z",
            "url": "https://files.pythonhosted.org/packages/c8/63/94f820c59ccde7a0e64f1202cfe42b054d6e70d6b63c5243a0d359242dd3/sae_lens-5.10.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-06-10 19:54:20",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jbloomAus",
    "github_project": "SAELens",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "sae-lens"
}
        
Elapsed time: 0.79893s