sae-lens


Namesae-lens JSON
Version 4.3.4 PyPI version JSON
download
home_pagehttps://jbloomaus.github.io/SAELens
SummaryTraining and Analyzing Sparse Autoencoders (SAEs)
upload_time2024-11-14 13:28:22
maintainerNone
docs_urlNone
authorJoseph Bloom
requires_python<4.0,>=3.10
licenseMIT
keywords deep-learning sparse-autoencoders mechanistic-interpretability pytorch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img width="1308" alt="Screenshot 2024-03-21 at 3 08 28 pm" src="https://github.com/jbloomAus/mats_sae_training/assets/69127271/209012ec-a779-4036-b4be-7b7739ea87f6">

# SAE Lens 
[![PyPI](https://img.shields.io/pypi/v/sae-lens?color=blue)](https://pypi.org/project/sae-lens/)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![build](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml)
[![Deploy Docs](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml)
[![codecov](https://codecov.io/gh/jbloomAus/SAELens/graph/badge.svg?token=N83NGH8CGE)](https://codecov.io/gh/jbloomAus/SAELens)

SAELens exists to help researchers:
- Train sparse autoencoders.
- Analyse sparse autoencoders / research mechanistic interpretability. 
- Generate insights which make it easier to create safe and aligned AI systems.

Please refer to the [documentation](https://jbloomaus.github.io/SAELens/) for information on how to:
- Download and Analyse pre-trained sparse autoencoders. 
- Train your own sparse autoencoders.
- Generate feature dashboards with the [SAE-Vis Library](https://github.com/callummcdougall/sae_vis/tree/main).

SAE Lens is the result of many contributors working collectively to improve humanity's understanding of neural networks, many of whom are motivated by a desire to [safeguard humanity from risks posed by artificial intelligence](https://80000hours.org/problem-profiles/artificial-intelligence/).

This library is maintained by [Joseph Bloom](https://www.jbloomaus.com/) and [David Chanin](https://github.com/chanind).

## Loading Pre-trained SAEs. 

Pre-trained SAEs for various models can be imported via SAE Lens. See this [page](https://jbloomaus.github.io/SAELens/sae_table/) in the readme for a list of all SAEs.
## Tutorials

- [SAE Lens + Neuronpedia](tutorials/tutorial_2_0.ipynb)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/tutorial_2_0.ipynb)
- [Loading and Analysing Pre-Trained Sparse Autoencoders](tutorials/basic_loading_and_analysing.ipynb)
 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/basic_loading_and_analysing.ipynb)
 - [Understanding SAE Features with the Logit Lens](tutorials/logits_lens_with_features.ipynb)
 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/logits_lens_with_features.ipynb)
  - [Training a Sparse Autoencoder](tutorials/training_a_sparse_autoencoder.ipynb)
 [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/training_a_sparse_autoencoder.ipynb)


## Join the Slack!

Feel free to join the [Open Source Mechanistic Interpretability Slack](https://join.slack.com/t/opensourcemechanistic/shared_invite/zt-2k0id7mv8-CsIgPLmmHd03RPJmLUcapw) for support!


## Citation

Please cite the package as follows:

```
@misc{bloom2024saetrainingcodebase,
   title = {SAELens},
   author = {Joseph Bloom, Curt Tigges and David Chanin},
   year = {2024},
   howpublished = {\url{https://github.com/jbloomAus/SAELens}},
}
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://jbloomaus.github.io/SAELens",
    "name": "sae-lens",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "deep-learning, sparse-autoencoders, mechanistic-interpretability, PyTorch",
    "author": "Joseph Bloom",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/91/0f/2581a1f187bacfc17fa768bfdc8a1111fa5d37c064bca820ebf963c8f266/sae_lens-4.3.4.tar.gz",
    "platform": null,
    "description": "<img width=\"1308\" alt=\"Screenshot 2024-03-21 at 3 08 28\u202fpm\" src=\"https://github.com/jbloomAus/mats_sae_training/assets/69127271/209012ec-a779-4036-b4be-7b7739ea87f6\">\n\n# SAE Lens \n[![PyPI](https://img.shields.io/pypi/v/sae-lens?color=blue)](https://pypi.org/project/sae-lens/)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![build](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/build.yml)\n[![Deploy Docs](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml/badge.svg)](https://github.com/jbloomAus/SAELens/actions/workflows/deploy_docs.yml)\n[![codecov](https://codecov.io/gh/jbloomAus/SAELens/graph/badge.svg?token=N83NGH8CGE)](https://codecov.io/gh/jbloomAus/SAELens)\n\nSAELens exists to help researchers:\n- Train sparse autoencoders.\n- Analyse sparse autoencoders / research mechanistic interpretability. \n- Generate insights which make it easier to create safe and aligned AI systems.\n\nPlease refer to the [documentation](https://jbloomaus.github.io/SAELens/) for information on how to:\n- Download and Analyse pre-trained sparse autoencoders. \n- Train your own sparse autoencoders.\n- Generate feature dashboards with the [SAE-Vis Library](https://github.com/callummcdougall/sae_vis/tree/main).\n\nSAE Lens is the result of many contributors working collectively to improve humanity's understanding of neural networks, many of whom are motivated by a desire to [safeguard humanity from risks posed by artificial intelligence](https://80000hours.org/problem-profiles/artificial-intelligence/).\n\nThis library is maintained by [Joseph Bloom](https://www.jbloomaus.com/) and [David Chanin](https://github.com/chanind).\n\n## Loading Pre-trained SAEs. \n\nPre-trained SAEs for various models can be imported via SAE Lens. See this [page](https://jbloomaus.github.io/SAELens/sae_table/) in the readme for a list of all SAEs.\n## Tutorials\n\n- [SAE Lens + Neuronpedia](tutorials/tutorial_2_0.ipynb)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/tutorial_2_0.ipynb)\n- [Loading and Analysing Pre-Trained Sparse Autoencoders](tutorials/basic_loading_and_analysing.ipynb)\n [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/basic_loading_and_analysing.ipynb)\n - [Understanding SAE Features with the Logit Lens](tutorials/logits_lens_with_features.ipynb)\n [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/logits_lens_with_features.ipynb)\n  - [Training a Sparse Autoencoder](tutorials/training_a_sparse_autoencoder.ipynb)\n [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://githubtocolab.com/jbloomAus/SAELens/blob/main/tutorials/training_a_sparse_autoencoder.ipynb)\n\n\n## Join the Slack!\n\nFeel free to join the [Open Source Mechanistic Interpretability Slack](https://join.slack.com/t/opensourcemechanistic/shared_invite/zt-2k0id7mv8-CsIgPLmmHd03RPJmLUcapw) for support!\n\n\n## Citation\n\nPlease cite the package as follows:\n\n```\n@misc{bloom2024saetrainingcodebase,\n   title = {SAELens},\n   author = {Joseph Bloom, Curt Tigges and David Chanin},\n   year = {2024},\n   howpublished = {\\url{https://github.com/jbloomAus/SAELens}},\n}\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Training and Analyzing Sparse Autoencoders (SAEs)",
    "version": "4.3.4",
    "project_urls": {
        "Homepage": "https://jbloomaus.github.io/SAELens",
        "Repository": "https://github.com/jbloomAus/SAELens"
    },
    "split_keywords": [
        "deep-learning",
        " sparse-autoencoders",
        " mechanistic-interpretability",
        " pytorch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "62ee75f1d7c749e5f95300d000225c8a05067010a5f90ccbd584642029bb20f7",
                "md5": "dde9d117baa16757a888fb2d111a3081",
                "sha256": "cddcf3b88e0552a24f4da86a344ecce7d8bc1bae9e4e4015919e2c8fc992b473"
            },
            "downloads": -1,
            "filename": "sae_lens-4.3.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dde9d117baa16757a888fb2d111a3081",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 139259,
            "upload_time": "2024-11-14T13:28:19",
            "upload_time_iso_8601": "2024-11-14T13:28:19.973550Z",
            "url": "https://files.pythonhosted.org/packages/62/ee/75f1d7c749e5f95300d000225c8a05067010a5f90ccbd584642029bb20f7/sae_lens-4.3.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "910f2581a1f187bacfc17fa768bfdc8a1111fa5d37c064bca820ebf963c8f266",
                "md5": "0565a94ca787c367a6a4722f1513ee3e",
                "sha256": "7d6c9ccf4c340d92de1151e22b9dc8d41052943ed711013fcd3830d0f20b9aa6"
            },
            "downloads": -1,
            "filename": "sae_lens-4.3.4.tar.gz",
            "has_sig": false,
            "md5_digest": "0565a94ca787c367a6a4722f1513ee3e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 128798,
            "upload_time": "2024-11-14T13:28:22",
            "upload_time_iso_8601": "2024-11-14T13:28:22.316618Z",
            "url": "https://files.pythonhosted.org/packages/91/0f/2581a1f187bacfc17fa768bfdc8a1111fa5d37c064bca820ebf963c8f266/sae_lens-4.3.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-14 13:28:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "jbloomAus",
    "github_project": "SAELens",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "sae-lens"
}
        
Elapsed time: 0.84098s