sagemaker-experiments-logger


Namesagemaker-experiments-logger JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/tsenst/lightning-experiments-logger
SummaryPyTorch Lightning Experiment Logger
upload_time2023-10-20 16:00:48
maintainer
docs_urlNone
authorTobias Senst
requires_python>=3.9
licenseApache 2.0
keywords pytorch-lightning aws sagemaker machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![Python Version](https://img.shields.io/badge/python-3.9%7C3.10%7C3.11-blue.svg)
[![PyPI Version](https://img.shields.io/pypi/v/sagemaker-experiments-logger)](https://pypi.org/project/sagemaker-experiments-logger/)
[![Documentation](https://github.com/tsenst/lightning-experiments-logger/actions/workflows/documentation.yaml/badge.svg)](https://tsenst.github.io/lightning-experiments-logger/index.html)
# SagemakerExperimentsLogger
SagemakerExperimentsLogger provides a simple way to log experimental data such as hyperparameter settings and evaluation metrics via [AWS SageMaker Experiments API](https://aws.amazon.com/blogs/aws/amazon-sagemaker-experiments-organize-track-and-compare-your-machine-learning-trainings/). It can be easily integration into the concept of [Pytorch Lightning Trainer class](https://lightning.ai/docs/pytorch/stable/common/trainer.html).

For detailed documentation, including the API reference, see [Read the Docs](https://tsenst.github.io/lightning-experiments-logger/index.html)

## Installation
You can install the latest (nightly) version with pip using ssh with

```bash
pip install sagemaker-experiments-logger
```

## Quickstart
The SageMaker Experiments logger can be easily applied by setup an own run context:
```Python
from pytorch_lightning import Trainer
from sagemaker.experiments.run import Run
from experiments_addon.logger import SagemakerExperimentsLogger

with Run(experiment_name="testExperiment", run_name="testRun1"):
    logger = SagemakerExperimentsLogger()
    trainer = Trainer(
        logger=logger,
        ...
    )
    ...
```
or by using an existing run context. For example in a SageMaker Training Step
```Python
from pytorch_lightning import Trainer
from experiments_addon.logger import SagemakerExperimentsLogger

logger = SagemakerExperimentsLogger(experiment_name="TestExp", run_name="TestRun")
trainer = Trainer(
logger=logger,
    ...
)
...
```

## Usage 

Try [Tutorial Notebook](https://github.com/tsenst/lightning-experiments-logger/blob/main/example/tutorial.ipynb) to learn more about the usage of the [SagemakerExperimentsLogger](https://tsenst.github.io/lightning-experiments-logger/api_logger.html) class. 

It is also worth to read the blog post: [Experiment Tracking With AWS SageMaker and PyTorch Lightning](https://medium.com/idealo-tech-blog/experiment-tracking-with-aws-sagemaker-and-pytorch-lightning-68b22fd4deee) 

## Contributing
I welcome all contributions!

To file a bug or request a feature, please file a GitHub issue. Pull requests are welcome.

## License
This library is licensed under the Apache 2.0 License.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tsenst/lightning-experiments-logger",
    "name": "sagemaker-experiments-logger",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "",
    "keywords": "pytorch-lightning,AWS SageMaker,machine learning",
    "author": "Tobias Senst",
    "author_email": "tobias.senst@googlemail.com",
    "download_url": "https://files.pythonhosted.org/packages/8f/b6/edecca4bb38878ecc852835944ce5dc948b15a49a873439ec6b515bf0836/sagemaker-experiments-logger-0.1.1.tar.gz",
    "platform": null,
    "description": "![Python Version](https://img.shields.io/badge/python-3.9%7C3.10%7C3.11-blue.svg)\n[![PyPI Version](https://img.shields.io/pypi/v/sagemaker-experiments-logger)](https://pypi.org/project/sagemaker-experiments-logger/)\n[![Documentation](https://github.com/tsenst/lightning-experiments-logger/actions/workflows/documentation.yaml/badge.svg)](https://tsenst.github.io/lightning-experiments-logger/index.html)\n# SagemakerExperimentsLogger\nSagemakerExperimentsLogger provides a simple way to log experimental data such as hyperparameter settings and evaluation metrics via [AWS SageMaker Experiments API](https://aws.amazon.com/blogs/aws/amazon-sagemaker-experiments-organize-track-and-compare-your-machine-learning-trainings/). It can be easily integration into the concept of [Pytorch Lightning Trainer class](https://lightning.ai/docs/pytorch/stable/common/trainer.html).\n\nFor detailed documentation, including the API reference, see [Read the Docs](https://tsenst.github.io/lightning-experiments-logger/index.html)\n\n## Installation\nYou can install the latest (nightly) version with pip using ssh with\n\n```bash\npip install sagemaker-experiments-logger\n```\n\n## Quickstart\nThe SageMaker Experiments logger can be easily applied by setup an own run context:\n```Python\nfrom pytorch_lightning import Trainer\nfrom sagemaker.experiments.run import Run\nfrom experiments_addon.logger import SagemakerExperimentsLogger\n\nwith Run(experiment_name=\"testExperiment\", run_name=\"testRun1\"):\n    logger = SagemakerExperimentsLogger()\n    trainer = Trainer(\n        logger=logger,\n        ...\n    )\n    ...\n```\nor by using an existing run context. For example in a SageMaker Training Step\n```Python\nfrom pytorch_lightning import Trainer\nfrom experiments_addon.logger import SagemakerExperimentsLogger\n\nlogger = SagemakerExperimentsLogger(experiment_name=\"TestExp\", run_name=\"TestRun\")\ntrainer = Trainer(\nlogger=logger,\n    ...\n)\n...\n```\n\n## Usage \n\nTry [Tutorial Notebook](https://github.com/tsenst/lightning-experiments-logger/blob/main/example/tutorial.ipynb) to learn more about the usage of the [SagemakerExperimentsLogger](https://tsenst.github.io/lightning-experiments-logger/api_logger.html) class. \n\nIt is also worth to read the blog post: [Experiment Tracking With AWS SageMaker and PyTorch Lightning](https://medium.com/idealo-tech-blog/experiment-tracking-with-aws-sagemaker-and-pytorch-lightning-68b22fd4deee) \n\n## Contributing\nI welcome all contributions!\n\nTo file a bug or request a feature, please file a GitHub issue. Pull requests are welcome.\n\n## License\nThis library is licensed under the Apache 2.0 License.\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "PyTorch Lightning Experiment Logger",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/tsenst/lightning-experiments-logger"
    },
    "split_keywords": [
        "pytorch-lightning",
        "aws sagemaker",
        "machine learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "90b080dbb2a13194f1c675083b27111a7f3cd324acd4664ceb0e809da6848464",
                "md5": "9bedf64ec8274c7c72fa087d9710d26e",
                "sha256": "083a1c9fa8595ee2457b23e219b18fab8b4f630c54b79b04ade33bfbf2a03387"
            },
            "downloads": -1,
            "filename": "sagemaker_experiments_logger-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9bedf64ec8274c7c72fa087d9710d26e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 14757,
            "upload_time": "2023-10-20T16:00:46",
            "upload_time_iso_8601": "2023-10-20T16:00:46.906172Z",
            "url": "https://files.pythonhosted.org/packages/90/b0/80dbb2a13194f1c675083b27111a7f3cd324acd4664ceb0e809da6848464/sagemaker_experiments_logger-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8fb6edecca4bb38878ecc852835944ce5dc948b15a49a873439ec6b515bf0836",
                "md5": "0be2676fc26f0e908656c86b0c2a5416",
                "sha256": "c15c0922f41ca01c78b8a18f3e65047beaff7e6da8787dc50f9c943608f8b8a6"
            },
            "downloads": -1,
            "filename": "sagemaker-experiments-logger-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "0be2676fc26f0e908656c86b0c2a5416",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 13164,
            "upload_time": "2023-10-20T16:00:48",
            "upload_time_iso_8601": "2023-10-20T16:00:48.645596Z",
            "url": "https://files.pythonhosted.org/packages/8f/b6/edecca4bb38878ecc852835944ce5dc948b15a49a873439ec6b515bf0836/sagemaker-experiments-logger-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-20 16:00:48",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tsenst",
    "github_project": "lightning-experiments-logger",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "sagemaker-experiments-logger"
}
        
Elapsed time: 0.63432s