# SageMaker MLFlow Plugin
## What does this Plugin do?
This plugin generates Signature V4 headers in each outgoing request to the SageMaker MLFlow service and also determines
the URL of the SageMaker MLFlow service. It generates a token with the SigV4 Algorithm that the service will use to
conduct Authentication and Authorization.
## Installation
To install this plugin, run the following command inside the directory:
```
pip install .
```
Eventually when the plugin gets distributed, it will be installed with:
```
pip install sagemaker-mlflow
```
Running this will install the Auth Plugin and mlflow.
To install a specific mlflow version
```
pip install .
pip install mlflow==2.13
```
## Development details
### setup.py
`setup.py` Contains the primary entry points for the sdk.
`install_requires` Installs mlflow.
`entry_points` Contains the entry points for the sdk. See https://mlflow.org/docs/latest/plugins.html#defining-a-plugin
for more details.
### Running tests
#### Setup
To run tests using tox, run:
```
pip install tox
```
Installing tox will enable users to run multi-environment tests. On the other hand, if
running individual tests in a single environment, feel free to continue to use pytest instead.
#### Running format checks
```
tox -e flake8,black-check,typing,twine
```
#### Formatting code to comply with format checks
```
tox -e black-format
```
#### Running unit tests
```
tox --skip-env "black.*|flake8|typing|twine" -- test/unit
```
#### Running integration tests
```
tox --skip-env "black.*|flake8|typing|twine" -- test/integration
```
#### Available test environments by default
tox.ini contains support for py39, py310, py311, with mlflow 2.11.* and 2.12.*.
To add test environments on tox for additional versions of python or mlflow, modify the
environment configs in `envlist`, as well as `deps` and `depends` in `[testenv]`.
Raw data
{
"_id": null,
"home_page": "https://github.com/aws/sagemaker-mlflow",
"name": "sagemaker-mlflow",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": "Amazon Web Services",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/2e/74/b8683edc86515e587a173eefc376a58bbae4768a4e4c9c83ba997f509d65/sagemaker_mlflow-0.1.0.tar.gz",
"platform": null,
"description": "# SageMaker MLFlow Plugin\n\n## What does this Plugin do?\n\nThis plugin generates Signature V4 headers in each outgoing request to the SageMaker MLFlow service and also determines\nthe URL of the SageMaker MLFlow service. It generates a token with the SigV4 Algorithm that the service will use to\nconduct Authentication and Authorization.\n\n## Installation\n\nTo install this plugin, run the following command inside the directory:\n```\npip install .\n```\n\nEventually when the plugin gets distributed, it will be installed with:\n```\npip install sagemaker-mlflow\n```\n\nRunning this will install the Auth Plugin and mlflow.\n\nTo install a specific mlflow version\n\n```\npip install .\npip install mlflow==2.13\n```\n\n## Development details\n\n### setup.py\n\n`setup.py` Contains the primary entry points for the sdk. \n`install_requires` Installs mlflow.\n`entry_points` Contains the entry points for the sdk. See https://mlflow.org/docs/latest/plugins.html#defining-a-plugin\nfor more details.\n\n### Running tests\n\n#### Setup\nTo run tests using tox, run:\n```\npip install tox\n```\nInstalling tox will enable users to run multi-environment tests. On the other hand, if\nrunning individual tests in a single environment, feel free to continue to use pytest instead.\n\n#### Running format checks\n```\ntox -e flake8,black-check,typing,twine\n```\n\n#### Formatting code to comply with format checks\n```\ntox -e black-format\n```\n\n#### Running unit tests\n```\ntox --skip-env \"black.*|flake8|typing|twine\" -- test/unit\n```\n\n#### Running integration tests\n```\ntox --skip-env \"black.*|flake8|typing|twine\" -- test/integration\n```\n\n#### Available test environments by default\ntox.ini contains support for py39, py310, py311, with mlflow 2.11.* and 2.12.*.\nTo add test environments on tox for additional versions of python or mlflow, modify the\nenvironment configs in `envlist`, as well as `deps` and `depends` in `[testenv]`.\n",
"bugtrack_url": null,
"license": "Apache License 2.0",
"summary": "AWS Plugin for MLFlow with SageMaker",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/aws/sagemaker-mlflow"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5e54e2dd3cf3e289e480600649b1e3f573ca54c8df1db1ac78cc55a24279b924",
"md5": "27fe21b7a258a67f93f1782024203072",
"sha256": "b0dc955e2898de2070b489e982372edafc0ec708634a2e69c21e2570d7308b0c"
},
"downloads": -1,
"filename": "sagemaker_mlflow-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "27fe21b7a258a67f93f1782024203072",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 24680,
"upload_time": "2024-06-18T18:35:21",
"upload_time_iso_8601": "2024-06-18T18:35:21.575571Z",
"url": "https://files.pythonhosted.org/packages/5e/54/e2dd3cf3e289e480600649b1e3f573ca54c8df1db1ac78cc55a24279b924/sagemaker_mlflow-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2e74b8683edc86515e587a173eefc376a58bbae4768a4e4c9c83ba997f509d65",
"md5": "49877d1171e8bc6c238b79263849078a",
"sha256": "1fe8f7f010f7c68b6b0b46c032cf6a414f20adfc26cbc6a731d3a91b32b9b84f"
},
"downloads": -1,
"filename": "sagemaker_mlflow-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "49877d1171e8bc6c238b79263849078a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 12798,
"upload_time": "2024-06-18T18:35:25",
"upload_time_iso_8601": "2024-06-18T18:35:25.390770Z",
"url": "https://files.pythonhosted.org/packages/2e/74/b8683edc86515e587a173eefc376a58bbae4768a4e4c9c83ba997f509d65/sagemaker_mlflow-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-18 18:35:25",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "aws",
"github_project": "sagemaker-mlflow",
"github_not_found": true,
"lcname": "sagemaker-mlflow"
}