sagemaker-studio-analytics-extension


Namesagemaker-studio-analytics-extension JSON
Version 0.1.4 PyPI version JSON
download
home_pagehttps://aws.amazon.com/sagemaker
SummarySageMaker Studio Analytics Extension
upload_time2025-01-24 22:38:14
maintainerNone
docs_urlNone
authorAmazon Web Services
requires_pythonNone
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SageMaker Studio Analytics Extension

This is a notebook extension provided by AWS SageMaker Studio Team to integrate with analytics resources. Currently, it supports connecting SageMaker Studio Notebook to Spark(EMR) cluster through SparkMagic library.

## Usage
Before you can use the magic command to connect Studio notebook to EMR, please ensure the SageMaker Studio has the connectivity to Spark cluster(livy service). You can refer to [this AWS blog](https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-studio-notebooks-backed-by-spark-in-amazon-emr/) for how to set up SageMaker Studio and EMR cluster. 
### Register the magic command:
```buildoutcfg
%load_ext sagemaker_studio_analytics_extension.magics
```
### Show help content:
```buildoutcfg
Docstring:
::

  %sm_analytics [--auth-type AUTH_TYPE] [--cluster-id CLUSTER_ID]
                    [--language LANGUAGE]
                    [--assumable-role-arn ASSUMABLE_ROLE_ARN]
                    [--emr-execution-role-arn EMR_EXECUTION_ROLE_ARN]
                    [--secret SECRET]
                    [--verify-certificate VERIFY_CERTIFICATE]
                    [--no-override-krb5-conf OPTIONAL]
                    [command [command ...]]

positional arguments:
  command               Command to execute. The command consists of a service
                        name followed by a ' ' followed by an operation.
                        Supported services are ['emr'] and supported
                        operations are ['connect']. For example a valid
                        command is 'emr connect'.

optional arguments:
  --auth-type AUTH_TYPE
                        The authentication type to be used. Supported
                        authentication types are {'Basic_Access', 'Kerberos',
                        'None'}.
  --cluster-id CLUSTER_ID
                        The cluster id to connect to.
  --language LANGUAGE   Language to use. The supported languages for IPython
                        kernel(s) are {'python', 'scala'}. This is a required
                        argument for IPython kernels, but not for magic
                        kernels such as PySpark or SparkScala.
  --assumable-role-arn ASSUMABLE_ROLE_ARN
                        The IAM role to assume when connecting to a cluster in
                        a different AWS account. This argument is not required
                        when connecting to a cluster in the same AWS account.
  --emr-execution-role-arn EMR_EXECUTION_ROLE_ARN
                        The IAM role passed to EMR to set up EMR job security
                        context. This argument is optional and used when IAM
                        Passthrough feature is enabled for EMR.
  --secret SECRET       The AWS Secrets Manager SecretID.
  --verify-certificate VERIFY_CERTIFICATE
                        Determine if SSL certificate should be verified when
                        using HTTPS to connect to EMR. Supported values are
                        ['True', 'False', 'PathToCert']. If a path-to-cert-
                        file is provided, the certificate verification will be
                        done with the certificate in the provided file
                        path.Note that the default
  --no-override-krb5-conf OPTIONAL
                        This argument is used standalone (no input value needed) 
                        and only when connecting to Kerberos cluster. With this 
                        key SageMaker will not override existing krb5.conf file.
                        User should make sure there is krb5.conf file at 
                        /etc/krb5.conf. If this key this not present, Sagemaker
                        will generate and override the krb5.conf file by default. 
```

### Examples
1. Connect Studio notebook using IPython Kernel to EMR cluster protected by Kerberos. 
```buildoutcfg
%sm_analytics emr connect --cluster-id j-1JIIZS02SEVCS --auth-type Kerberos --language python
```

2. Connect Studio notebook using IPython Kernel to HTTP Basic Auth protected EMR cluster and create the Scala based session.  
```buildoutcfg
%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type Basic_Access  --language scala
```

3. Connect Studio notebook using IPython Kernel to EMR cluster directly without Livy authentication. 
```buildoutcfg
%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type None  --language python
```

4. Connect Studio notebook using PySpark or Spark(scala) Kernel to HTTP Basic Auth protected EMR cluster. 
```buildoutcfg
%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type Basic_Access
```
## License

This library is licensed under the Apache 2.0 License. See the LICENSE file.


            

Raw data

            {
    "_id": null,
    "home_page": "https://aws.amazon.com/sagemaker",
    "name": "sagemaker-studio-analytics-extension",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Amazon Web Services",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/11/09/e3e99d8b310ebda29edc352de342ab8c058cb8421aa1fd3066994179d2cb/sagemaker_studio_analytics_extension-0.1.4.tar.gz",
    "platform": null,
    "description": "# SageMaker Studio Analytics Extension\n\nThis is a notebook extension provided by AWS SageMaker Studio Team to integrate with analytics resources. Currently, it supports connecting SageMaker Studio Notebook to Spark(EMR) cluster through SparkMagic library.\n\n## Usage\nBefore you can use the magic command to connect Studio notebook to EMR, please ensure the SageMaker Studio has the connectivity to Spark cluster(livy service). You can refer to [this AWS blog](https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-studio-notebooks-backed-by-spark-in-amazon-emr/) for how to set up SageMaker Studio and EMR cluster. \n### Register the magic command:\n```buildoutcfg\n%load_ext sagemaker_studio_analytics_extension.magics\n```\n### Show help content:\n```buildoutcfg\nDocstring:\n::\n\n  %sm_analytics [--auth-type AUTH_TYPE] [--cluster-id CLUSTER_ID]\n                    [--language LANGUAGE]\n                    [--assumable-role-arn ASSUMABLE_ROLE_ARN]\n                    [--emr-execution-role-arn EMR_EXECUTION_ROLE_ARN]\n                    [--secret SECRET]\n                    [--verify-certificate VERIFY_CERTIFICATE]\n                    [--no-override-krb5-conf OPTIONAL]\n                    [command [command ...]]\n\npositional arguments:\n  command               Command to execute. The command consists of a service\n                        name followed by a ' ' followed by an operation.\n                        Supported services are ['emr'] and supported\n                        operations are ['connect']. For example a valid\n                        command is 'emr connect'.\n\noptional arguments:\n  --auth-type AUTH_TYPE\n                        The authentication type to be used. Supported\n                        authentication types are {'Basic_Access', 'Kerberos',\n                        'None'}.\n  --cluster-id CLUSTER_ID\n                        The cluster id to connect to.\n  --language LANGUAGE   Language to use. The supported languages for IPython\n                        kernel(s) are {'python', 'scala'}. This is a required\n                        argument for IPython kernels, but not for magic\n                        kernels such as PySpark or SparkScala.\n  --assumable-role-arn ASSUMABLE_ROLE_ARN\n                        The IAM role to assume when connecting to a cluster in\n                        a different AWS account. This argument is not required\n                        when connecting to a cluster in the same AWS account.\n  --emr-execution-role-arn EMR_EXECUTION_ROLE_ARN\n                        The IAM role passed to EMR to set up EMR job security\n                        context. This argument is optional and used when IAM\n                        Passthrough feature is enabled for EMR.\n  --secret SECRET       The AWS Secrets Manager SecretID.\n  --verify-certificate VERIFY_CERTIFICATE\n                        Determine if SSL certificate should be verified when\n                        using HTTPS to connect to EMR. Supported values are\n                        ['True', 'False', 'PathToCert']. If a path-to-cert-\n                        file is provided, the certificate verification will be\n                        done with the certificate in the provided file\n                        path.Note that the default\n  --no-override-krb5-conf OPTIONAL\n                        This argument is used standalone (no input value needed) \n                        and only when connecting to Kerberos cluster. With this \n                        key SageMaker will not override existing krb5.conf file.\n                        User should make sure there is krb5.conf file at \n                        /etc/krb5.conf. If this key this not present, Sagemaker\n                        will generate and override the krb5.conf file by default. \n```\n\n### Examples\n1. Connect Studio notebook using IPython Kernel to EMR cluster protected by Kerberos. \n```buildoutcfg\n%sm_analytics emr connect --cluster-id j-1JIIZS02SEVCS --auth-type Kerberos --language python\n```\n\n2. Connect Studio notebook using IPython Kernel to HTTP Basic Auth protected EMR cluster and create the Scala based session.  \n```buildoutcfg\n%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type Basic_Access  --language scala\n```\n\n3. Connect Studio notebook using IPython Kernel to EMR cluster directly without Livy authentication. \n```buildoutcfg\n%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type None  --language python\n```\n\n4. Connect Studio notebook using PySpark or Spark(scala) Kernel to HTTP Basic Auth protected EMR cluster. \n```buildoutcfg\n%sm_analytics emr connect --cluster-id j-1KHIOQZAQUF5P --auth-type Basic_Access\n```\n## License\n\nThis library is licensed under the Apache 2.0 License. See the LICENSE file.\n\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "SageMaker Studio Analytics Extension",
    "version": "0.1.4",
    "project_urls": {
        "Homepage": "https://aws.amazon.com/sagemaker"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "1109e3e99d8b310ebda29edc352de342ab8c058cb8421aa1fd3066994179d2cb",
                "md5": "de5ed325b2b68bc42b25b5a0379e8f71",
                "sha256": "13ad4d54fae49a6a71bb2a9f3527b309ffb608eb759572ba6b7077ea5435e606"
            },
            "downloads": -1,
            "filename": "sagemaker_studio_analytics_extension-0.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "de5ed325b2b68bc42b25b5a0379e8f71",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 57110,
            "upload_time": "2025-01-24T22:38:14",
            "upload_time_iso_8601": "2025-01-24T22:38:14.314984Z",
            "url": "https://files.pythonhosted.org/packages/11/09/e3e99d8b310ebda29edc352de342ab8c058cb8421aa1fd3066994179d2cb/sagemaker_studio_analytics_extension-0.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-24 22:38:14",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sagemaker-studio-analytics-extension"
}
        
Elapsed time: 1.14003s