# SageMakerStudioDataEngineeringExtensions
SageMaker Unified Studio Data Engineering Extensions
This package contains several extensions that enhance the experiences for SageMakerStudioDataEngineeringSessions.
This pacakge is depend on SageMaker Unified Studio environment.
## List of extensions
- SageMaker Connection Magic JupyterLab Extension
- SageMaker Data Explorer
- SageMaker Jupyter Server Extension
- SageMaker Spark Monitor
- SageMaker Unified Studio Theme
- SageMaker UI Doc Manger JupyterLag Plugin
## How to install these extensions
### Conda
For Conda users, if you install this package via Conda, all of these extensions are installed by default.
### PyPi
For PyPi users, if you install this package via pip install, all of these extensions are installed by default.
## Extension Details
### SageMaker Connection Magic JupyterLab Extension
This package contains a JupyterLab extension which provides a user-friendly experience for switching between different computes. For example, you can use this extension to easily switch from local python compute to different remote computes like EMR Cluster/Glue/EMR-Serverless.
### SageMaker Data Explorer
This package contains a JupyterLab extension which provides a side tab inside JupyterLab. That tab supports browsering data from different data source like Redshift/S3/LakeHouse.
### SageMaker Jupyter Server Extension
This package contains some Jupyter Server api to support other extensions in SageMaker Unified Studio.
### SageMaker Spark Monitor
This package contains a JupyterLab extension which provides a widget showing the progress of a running spark application in remote compute.
#### Setup
To load this extension, make sure you have iPython config file generated. If not, you could run `ipython profile create`, then a file with path `~/.ipython/profile_default/ipython_config.py` should be generated
Then you will need to add the following line in the end of that config file
```
c.InteractiveShellApp.extensions.extend(['sagemaker_sparkmonitor.kernelextension'])
```
once that config is added, restart the JupyterLab kernel to make the config change apply
### SageMaker Unified Studio Theme
This package contains a custom Theme for SageMaker Unified Studio
### SageMaker UI Doc Manger JupyterLag Plugin
This package is a JupyterLab extension which supports a shortcut from SageMaker Unified Studio portal to open a notebook in JupyterLab.
Raw data
{
"_id": null,
"home_page": null,
"name": "sagemaker-studio-dataengineering-extensions",
"maintainer": "sagemaker-unified-studio",
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": null,
"keywords": "AWS, Amazon, Data Engineering, SageMaker, SageMaker Unified Studio",
"author": "Amazon Web Services",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/f5/57/b19da8567bb137663d1d0d9dfd2a83f4951875499c4ac50cd32b123ee276/sagemaker_studio_dataengineering_extensions-1.2.9.tar.gz",
"platform": null,
"description": "# SageMakerStudioDataEngineeringExtensions\n\nSageMaker Unified Studio Data Engineering Extensions\n\nThis package contains several extensions that enhance the experiences for SageMakerStudioDataEngineeringSessions.\n\nThis pacakge is depend on SageMaker Unified Studio environment.\n\n## List of extensions\n\n- SageMaker Connection Magic JupyterLab Extension\n- SageMaker Data Explorer\n- SageMaker Jupyter Server Extension\n- SageMaker Spark Monitor\n- SageMaker Unified Studio Theme\n- SageMaker UI Doc Manger JupyterLag Plugin\n\n## How to install these extensions\n\n### Conda\nFor Conda users, if you install this package via Conda, all of these extensions are installed by default.\n\n### PyPi\nFor PyPi users, if you install this package via pip install, all of these extensions are installed by default.\n\n## Extension Details\n\n### SageMaker Connection Magic JupyterLab Extension\n\nThis package contains a JupyterLab extension which provides a user-friendly experience for switching between different computes. For example, you can use this extension to easily switch from local python compute to different remote computes like EMR Cluster/Glue/EMR-Serverless.\n\n### SageMaker Data Explorer\n\nThis package contains a JupyterLab extension which provides a side tab inside JupyterLab. That tab supports browsering data from different data source like Redshift/S3/LakeHouse.\n\n\n### SageMaker Jupyter Server Extension\n\nThis package contains some Jupyter Server api to support other extensions in SageMaker Unified Studio.\n\n### SageMaker Spark Monitor\n\nThis package contains a JupyterLab extension which provides a widget showing the progress of a running spark application in remote compute.\n\n#### Setup\n\nTo load this extension, make sure you have iPython config file generated. If not, you could run `ipython profile create`, then a file with path `~/.ipython/profile_default/ipython_config.py` should be generated\n\nThen you will need to add the following line in the end of that config file\n\n```\nc.InteractiveShellApp.extensions.extend(['sagemaker_sparkmonitor.kernelextension'])\n```\n\nonce that config is added, restart the JupyterLab kernel to make the config change apply\n\n### SageMaker Unified Studio Theme\n\nThis package contains a custom Theme for SageMaker Unified Studio\n\n### SageMaker UI Doc Manger JupyterLag Plugin\n\nThis package is a JupyterLab extension which supports a shortcut from SageMaker Unified Studio portal to open a notebook in JupyterLab.\n",
"bugtrack_url": null,
"license": null,
"summary": "A python Package to enhance experience of SageMaker Unified Studio",
"version": "1.2.9",
"project_urls": null,
"split_keywords": [
"aws",
" amazon",
" data engineering",
" sagemaker",
" sagemaker unified studio"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d7a7860e54451d70ae2eeb0806efcb102fd1af8185e4c3cb5a94c604f1ae67f5",
"md5": "2a213d2b651b6d825da624f9d9cd2671",
"sha256": "33ff5fa80a5b2631ebc622e02a08ee659cb624edb91a6951699417a6edadd4ff"
},
"downloads": -1,
"filename": "sagemaker_studio_dataengineering_extensions-1.2.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2a213d2b651b6d825da624f9d9cd2671",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.11",
"size": 3525933,
"upload_time": "2025-08-27T04:10:52",
"upload_time_iso_8601": "2025-08-27T04:10:52.398566Z",
"url": "https://files.pythonhosted.org/packages/d7/a7/860e54451d70ae2eeb0806efcb102fd1af8185e4c3cb5a94c604f1ae67f5/sagemaker_studio_dataengineering_extensions-1.2.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f557b19da8567bb137663d1d0d9dfd2a83f4951875499c4ac50cd32b123ee276",
"md5": "8206e7ecec064c691b5251d0a5bdac48",
"sha256": "24d9fa8d6bf96c693a3ee095b6217871463e6e1f10be171831ee0f9d2d5901ba"
},
"downloads": -1,
"filename": "sagemaker_studio_dataengineering_extensions-1.2.9.tar.gz",
"has_sig": false,
"md5_digest": "8206e7ecec064c691b5251d0a5bdac48",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.11",
"size": 3609879,
"upload_time": "2025-08-27T04:10:54",
"upload_time_iso_8601": "2025-08-27T04:10:54.295853Z",
"url": "https://files.pythonhosted.org/packages/f5/57/b19da8567bb137663d1d0d9dfd2a83f4951875499c4ac50cd32b123ee276/sagemaker_studio_dataengineering_extensions-1.2.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-27 04:10:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "sagemaker-studio-dataengineering-extensions"
}