sairyscan


Namesairyscan JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/sylvainprigent/sairyscan
SummaryAiryscan multi-array detector high resolution image reconstruction
upload_time2024-08-28 16:44:40
maintainerNone
docs_urlNone
authorSylvain Prigent
requires_python>=3.10
licenseBSD-3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SAiryscan

SAiryscan is a python proof of concept of the algorithms developed in the publication: [Optic letters](https://opg.optica.org/ol/abstract.cfm?uri=ol-48-2-498&origin=search)


![optic_letters](docs/source/images/optic_letters.png "optic_letters")

The implementation is based on `PyTorch` for it capabilities of using the GPU if available.

## Documentation

The documentation is available [here](https://sylvainprigent.github.io/sairyscan/about.html).

## Quick start

The easiest way to use the code without modifications is to use de command line interface:

```bash
airyscan -i celegans.czi -r SRegisterPosition -m ISM -o celegans_ism.tiff
```

To build pipeline please refer to the API documentation [guide](https://sylvainprigent.github.io/sairyscan/guide.html)


# For development

## Install dev dependencies

```bash
pip install -r requirements.txt
```

## Run the tests

```bash
pytest sairyscan
```

## Check PEP8

```bash
pylint sairyscan
```

## Build the documentation

The documentation is written with Sphinx. To build is run the commands:

```bash
cd docs
pipenv run sphinx-build -b html ./source ./build
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/sylvainprigent/sairyscan",
    "name": "sairyscan",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "Sylvain Prigent",
    "author_email": "meriadec.prigent@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f3/fe/c2358c6c9bfc6e90cc83b7da358004816034f74991dd4bc2dd3165359a33/sairyscan-0.0.3.tar.gz",
    "platform": null,
    "description": "# SAiryscan\n\nSAiryscan is a python proof of concept of the algorithms developed in the publication: [Optic letters](https://opg.optica.org/ol/abstract.cfm?uri=ol-48-2-498&origin=search)\n\n\n![optic_letters](docs/source/images/optic_letters.png \"optic_letters\")\n\nThe implementation is based on `PyTorch` for it capabilities of using the GPU if available.\n\n## Documentation\n\nThe documentation is available [here](https://sylvainprigent.github.io/sairyscan/about.html).\n\n## Quick start\n\nThe easiest way to use the code without modifications is to use de command line interface:\n\n```bash\nairyscan -i celegans.czi -r SRegisterPosition -m ISM -o celegans_ism.tiff\n```\n\nTo build pipeline please refer to the API documentation [guide](https://sylvainprigent.github.io/sairyscan/guide.html)\n\n\n# For development\n\n## Install dev dependencies\n\n```bash\npip install -r requirements.txt\n```\n\n## Run the tests\n\n```bash\npytest sairyscan\n```\n\n## Check PEP8\n\n```bash\npylint sairyscan\n```\n\n## Build the documentation\n\nThe documentation is written with Sphinx. To build is run the commands:\n\n```bash\ncd docs\npipenv run sphinx-build -b html ./source ./build\n```\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Airyscan multi-array detector high resolution image reconstruction",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/sylvainprigent/sairyscan"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76ceeba3590753cd16e7feed9226db60667ca16f221a4e87880f2181c037cc56",
                "md5": "5c6b885a3522e38854afff18a02bc8f3",
                "sha256": "d90f1103402becf98694139b6aef11101b5c4d37d345b7652226e83106f35675"
            },
            "downloads": -1,
            "filename": "sairyscan-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5c6b885a3522e38854afff18a02bc8f3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 2971649,
            "upload_time": "2024-08-28T16:44:38",
            "upload_time_iso_8601": "2024-08-28T16:44:38.441102Z",
            "url": "https://files.pythonhosted.org/packages/76/ce/eba3590753cd16e7feed9226db60667ca16f221a4e87880f2181c037cc56/sairyscan-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f3fec2358c6c9bfc6e90cc83b7da358004816034f74991dd4bc2dd3165359a33",
                "md5": "dc30110ee7a3c29a731afc953cfb14f7",
                "sha256": "7e782e5d6ddfe6d036aec257c703a8131d6abb16f1ce3a32960539df72a3362c"
            },
            "downloads": -1,
            "filename": "sairyscan-0.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "dc30110ee7a3c29a731afc953cfb14f7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2917971,
            "upload_time": "2024-08-28T16:44:40",
            "upload_time_iso_8601": "2024-08-28T16:44:40.283551Z",
            "url": "https://files.pythonhosted.org/packages/f3/fe/c2358c6c9bfc6e90cc83b7da358004816034f74991dd4bc2dd3165359a33/sairyscan-0.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-28 16:44:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sylvainprigent",
    "github_project": "sairyscan",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "sairyscan"
}
        
Elapsed time: 0.67763s