saxsmart


Namesaxsmart JSON
Version 1.0.0 PyPI version JSON
download
home_pageNone
SummarySAXSMART: SAXS modeling and refinement toolkit (Dash app)
upload_time2025-08-18 07:09:37
maintainerNone
docs_urlNone
authorHayden Fisher
requires_python>=3.9
licenseMIT
keywords saxs pepsi-saxs dash bioinformatics scattering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SAXSMART: SAXS Modelling and Refinement Toolkit

## Overview

SAXSMART is an interactive web application for the analysis and refinement of Small-Angle X-ray Scattering (SAXS) data. It provides a user-friendly interface to perform common SAXS analyses and refine structural models against experimental data using PEPSI-SAXS.

## Features

- **Data Upload:** Upload SAXS curves (.dat), protein sequences (.fasta), and structures (.pdb/.cif).
- **Database Fetch:** Fetch structural models directly from the PDB or AlphaFold Database.
- **Automated Analysis:** Automatic calculation of Guinier fit, P(r) distribution, and Kratky plots.
- **Interactive Refinement:** Integrated PEPSI-SAXS for rigid-body and flexible model refinement.
- **Rich Visualization:** Interactive plots and 3D molecular viewers.

---

## Installation

### From Pypi

```bash
# Create and activate a virtual environment (or use conda)
python3 -m venv .venv
source .venv/bin/activate

# Install
pip install -e saxsmart
```

### From source

```bash
# Clone your repository
git clone https://gitlab.esrf.fr/hayden5a/saxsmart.git
cd saxsmart

# Create and activate a virtual environment (or use conda)
python3 -m venv .venv
source .venv/bin/activate

# Install
python -m pip install -U pip
pip install -e .
```

> **Note:** Dependencies are declared in `pyproject.toml`.

---

## Running

After installation, use the console script:

```bash
saxsmart
```

Alternative entry points:

```bash
python -m saxsmart
```

- Dash automatically serves files in the packaged `assets/` directory.
- Example data is bundled under `saxsmart/example_data/`.

---

## Configuration

You can configure paths via environment variables:

- `PEPSI_SAXS_BIN` — Full path to the `pepsi-SAXS` executable (if not on `PATH`).
  ```bash
  export PEPSI_SAXS_BIN=/opt/pepsi/pepsi-SAXS
  ```
- `SAXSMART_CACHE_DIR` — Override the directory for long-callback caching.
  ```bash
  export SAXSMART_CACHE_DIR=/scratch/$USER/saxsmart-cache
  ```
- `SAXSMART_TEMP` — Override the temporary working directory.
  ```bash
  export SAXSMART_TEMP=/scratch/$USER/saxsmart-tmp
  ```

> If `PEPSI-SAXS` is not required for your workflow, related actions will be disabled or produce a friendly error message.

---

## License

MIT (see `LICENSE`).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "saxsmart",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "SAXS, PEPSI-SAXS, Dash, bioinformatics, scattering",
    "author": "Hayden Fisher",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/e8/e7/7194903c49ab85ed7cfc82c95aaba5b213dfef509a043d5e2d569d00c44f/saxsmart-1.0.0.tar.gz",
    "platform": null,
    "description": "# SAXSMART: SAXS Modelling and Refinement Toolkit\n\n## Overview\n\nSAXSMART is an interactive web application for the analysis and refinement of Small-Angle X-ray Scattering (SAXS) data. It provides a user-friendly interface to perform common SAXS analyses and refine structural models against experimental data using PEPSI-SAXS.\n\n## Features\n\n- **Data Upload:** Upload SAXS curves (.dat), protein sequences (.fasta), and structures (.pdb/.cif).\n- **Database Fetch:** Fetch structural models directly from the PDB or AlphaFold Database.\n- **Automated Analysis:** Automatic calculation of Guinier fit, P(r) distribution, and Kratky plots.\n- **Interactive Refinement:** Integrated PEPSI-SAXS for rigid-body and flexible model refinement.\n- **Rich Visualization:** Interactive plots and 3D molecular viewers.\n\n---\n\n## Installation\n\n### From Pypi\n\n```bash\n# Create and activate a virtual environment (or use conda)\npython3 -m venv .venv\nsource .venv/bin/activate\n\n# Install\npip install -e saxsmart\n```\n\n### From source\n\n```bash\n# Clone your repository\ngit clone https://gitlab.esrf.fr/hayden5a/saxsmart.git\ncd saxsmart\n\n# Create and activate a virtual environment (or use conda)\npython3 -m venv .venv\nsource .venv/bin/activate\n\n# Install\npython -m pip install -U pip\npip install -e .\n```\n\n> **Note:** Dependencies are declared in `pyproject.toml`.\n\n---\n\n## Running\n\nAfter installation, use the console script:\n\n```bash\nsaxsmart\n```\n\nAlternative entry points:\n\n```bash\npython -m saxsmart\n```\n\n- Dash automatically serves files in the packaged `assets/` directory.\n- Example data is bundled under `saxsmart/example_data/`.\n\n---\n\n## Configuration\n\nYou can configure paths via environment variables:\n\n- `PEPSI_SAXS_BIN` \u2014 Full path to the `pepsi-SAXS` executable (if not on `PATH`).\n  ```bash\n  export PEPSI_SAXS_BIN=/opt/pepsi/pepsi-SAXS\n  ```\n- `SAXSMART_CACHE_DIR` \u2014 Override the directory for long-callback caching.\n  ```bash\n  export SAXSMART_CACHE_DIR=/scratch/$USER/saxsmart-cache\n  ```\n- `SAXSMART_TEMP` \u2014 Override the temporary working directory.\n  ```bash\n  export SAXSMART_TEMP=/scratch/$USER/saxsmart-tmp\n  ```\n\n> If `PEPSI-SAXS` is not required for your workflow, related actions will be disabled or produce a friendly error message.\n\n---\n\n## License\n\nMIT (see `LICENSE`).\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "SAXSMART: SAXS modeling and refinement toolkit (Dash app)",
    "version": "1.0.0",
    "project_urls": {
        "Homepage": "https://gitlab.esrf.fr/hayden5a/saxsmart"
    },
    "split_keywords": [
        "saxs",
        " pepsi-saxs",
        " dash",
        " bioinformatics",
        " scattering"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e8e77194903c49ab85ed7cfc82c95aaba5b213dfef509a043d5e2d569d00c44f",
                "md5": "18b02eb2a29b92dc651992503f72b824",
                "sha256": "23885ad7b83e36d8d099540d4d5e002f106eb266cecef86840c64b6dc1a5b333"
            },
            "downloads": -1,
            "filename": "saxsmart-1.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "18b02eb2a29b92dc651992503f72b824",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 166841,
            "upload_time": "2025-08-18T07:09:37",
            "upload_time_iso_8601": "2025-08-18T07:09:37.523835Z",
            "url": "https://files.pythonhosted.org/packages/e8/e7/7194903c49ab85ed7cfc82c95aaba5b213dfef509a043d5e2d569d00c44f/saxsmart-1.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-18 07:09:37",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "saxsmart"
}
        
Elapsed time: 0.92197s