sbr-model


Namesbr-model JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryUn regresor de Machine Learning que implementa un ensamblaje de Stacking con modelos de Boosting.
upload_time2025-09-18 11:32:18
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT License Copyright (c) 2025 Pablo Eduardo Chavez Mercado Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords stacking boosting regressor ensemble xgboost machine-learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sbr-model 📈

[![PyPI version](https://badge.fury.io/py/sbr-model.svg)](https://badge.fury.io/py/sbr-model)
[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)

Un regresor de Machine Learning fácil de usar que implementa un ensamblaje de Stacking con modelos de Boosting (XGBoost, LightGBM, CatBoost).

## ¿Qué es sbr-model? 🤔

`sbr-model` es una librería de alto nivel diseñada para simplificar el proceso de creación de modelos de ensamblaje robustos para tareas de **regresión**. En lugar de configurar manualmente la validación cruzada y el meta-modelo, `sbr-model` lo encapsula en una sola clase, compatible con scikit-learn.

El nombre **SBR** significa **S**tacking **B**oosting **R**egressor.

---

## Características Principales ✨

* **Modelos Potentes:** Utiliza XGBoost, LightGBM y CatBoost como modelos base, tres de los algoritmos más potentes para datos tabulares.
* **Stacking Automatizado:** Gestiona automáticamente el proceso de validación cruzada para generar predicciones "out-of-fold" y entrenar un meta-modelo.
* **Fácil de Usar:** Interfaz simple inspirada en scikit-learn. Solo necesitas instanciar la clase y llamar a `.fit()` y `.predict()`.
* **Compatible:** Al heredar de `RegressorMixin`, se integra con el ecosistema de scikit-learn.

---

## Instalación 📦

Puedes instalar `sbr-model` directamente desde PyPI:

```bash
pip install sbr-model

import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
import xgboost as xgb

# Importamos tu clase desde la librería instalada
from sbr_model import StackingRegressor

# 1. Crear datos de ejemplo para un problema de regresión
# Esto nos permite probar el modelo sin necesidad de un archivo CSV
X, y = make_regression(n_samples=1000, n_features=20, n_informative=15, noise=0.1, random_state=42)
X_test, _ = make_regression(n_samples=500, n_features=20, n_informative=15, noise=0.1, random_state=2025)

# 2. Definir los "ingredientes": modelos base y meta-modelo
base_models = [
    ('xgb', xgb.XGBRegressor(random_state=42)),
    # Aquí podrías añadir más modelos, como LGBMRegressor o CatBoostRegressor
]
meta_model = LinearRegression()

# 3. Instanciar y entrenar el modelo
sbr = StackingRegressor(base_models=base_models, meta_model=meta_model, n_folds=5)
sbr.fit(X, y)

# 4. Hacer predicciones
predictions = sbr.predict(X_test)

# 5. Ver los resultados
print("Primeras 10 predicciones generadas por sbr-model:")
print(predictions[:10])

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sbr-model",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "stacking, boosting, regressor, ensemble, xgboost, machine-learning",
    "author": null,
    "author_email": "Pablo Eduardo Chavez Mercado <pablo.chavez1992@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/8e/6a/2840c0fc1bb4810c3f66ec10b4717311192e08744b5a37a9026860e43071/sbr_model-0.2.1.tar.gz",
    "platform": null,
    "description": "# sbr-model \ud83d\udcc8\r\n\r\n[![PyPI version](https://badge.fury.io/py/sbr-model.svg)](https://badge.fury.io/py/sbr-model)\r\n[![License: MIT](https://img.shields.io/badge/License-MIT-blue.svg)](https://opensource.org/licenses/MIT)\r\n\r\nUn regresor de Machine Learning f\u00e1cil de usar que implementa un ensamblaje de Stacking con modelos de Boosting (XGBoost, LightGBM, CatBoost).\r\n\r\n## \u00bfQu\u00e9 es sbr-model? \ud83e\udd14\r\n\r\n`sbr-model` es una librer\u00eda de alto nivel dise\u00f1ada para simplificar el proceso de creaci\u00f3n de modelos de ensamblaje robustos para tareas de **regresi\u00f3n**. En lugar de configurar manualmente la validaci\u00f3n cruzada y el meta-modelo, `sbr-model` lo encapsula en una sola clase, compatible con scikit-learn.\r\n\r\nEl nombre **SBR** significa **S**tacking **B**oosting **R**egressor.\r\n\r\n---\r\n\r\n## Caracter\u00edsticas Principales \u2728\r\n\r\n* **Modelos Potentes:** Utiliza XGBoost, LightGBM y CatBoost como modelos base, tres de los algoritmos m\u00e1s potentes para datos tabulares.\r\n* **Stacking Automatizado:** Gestiona autom\u00e1ticamente el proceso de validaci\u00f3n cruzada para generar predicciones \"out-of-fold\" y entrenar un meta-modelo.\r\n* **F\u00e1cil de Usar:** Interfaz simple inspirada en scikit-learn. Solo necesitas instanciar la clase y llamar a `.fit()` y `.predict()`.\r\n* **Compatible:** Al heredar de `RegressorMixin`, se integra con el ecosistema de scikit-learn.\r\n\r\n---\r\n\r\n## Instalaci\u00f3n \ud83d\udce6\r\n\r\nPuedes instalar `sbr-model` directamente desde PyPI:\r\n\r\n```bash\r\npip install sbr-model\r\n\r\nimport numpy as np\r\nfrom sklearn.datasets import make_regression\r\nfrom sklearn.linear_model import LinearRegression\r\nimport xgboost as xgb\r\n\r\n# Importamos tu clase desde la librer\u00eda instalada\r\nfrom sbr_model import StackingRegressor\r\n\r\n# 1. Crear datos de ejemplo para un problema de regresi\u00f3n\r\n# Esto nos permite probar el modelo sin necesidad de un archivo CSV\r\nX, y = make_regression(n_samples=1000, n_features=20, n_informative=15, noise=0.1, random_state=42)\r\nX_test, _ = make_regression(n_samples=500, n_features=20, n_informative=15, noise=0.1, random_state=2025)\r\n\r\n# 2. Definir los \"ingredientes\": modelos base y meta-modelo\r\nbase_models = [\r\n    ('xgb', xgb.XGBRegressor(random_state=42)),\r\n    # Aqu\u00ed podr\u00edas a\u00f1adir m\u00e1s modelos, como LGBMRegressor o CatBoostRegressor\r\n]\r\nmeta_model = LinearRegression()\r\n\r\n# 3. Instanciar y entrenar el modelo\r\nsbr = StackingRegressor(base_models=base_models, meta_model=meta_model, n_folds=5)\r\nsbr.fit(X, y)\r\n\r\n# 4. Hacer predicciones\r\npredictions = sbr.predict(X_test)\r\n\r\n# 5. Ver los resultados\r\nprint(\"Primeras 10 predicciones generadas por sbr-model:\")\r\nprint(predictions[:10])\r\n",
    "bugtrack_url": null,
    "license": "MIT License\r\n        \r\n        Copyright (c) 2025 Pablo Eduardo Chavez Mercado\r\n        \r\n        Permission is hereby granted, free of charge, to any person obtaining a copy\r\n        of this software and associated documentation files (the \"Software\"), to deal\r\n        in the Software without restriction, including without limitation the rights\r\n        to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\r\n        copies of the Software, and to permit persons to whom the Software is\r\n        furnished to do so, subject to the following conditions:\r\n        \r\n        The above copyright notice and this permission notice shall be included in all\r\n        copies or substantial portions of the Software.\r\n        \r\n        THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\r\n        IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\r\n        FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\r\n        AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\r\n        LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\r\n        OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\r\n        SOFTWARE.",
    "summary": "Un regresor de Machine Learning que implementa un ensamblaje de Stacking con modelos de Boosting.",
    "version": "0.2.1",
    "project_urls": null,
    "split_keywords": [
        "stacking",
        " boosting",
        " regressor",
        " ensemble",
        " xgboost",
        " machine-learning"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "c47051b9650b742637d846dd4344360c37f00c8d09c838128e55ff691f33f79a",
                "md5": "3ddc75fbe13097bfeb60d49e22b65d02",
                "sha256": "844ac2cfde95df80c1a20b1c90767dc313913db06884a3faee0fefbe480ee7a9"
            },
            "downloads": -1,
            "filename": "sbr_model-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3ddc75fbe13097bfeb60d49e22b65d02",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 5391,
            "upload_time": "2025-09-18T11:32:17",
            "upload_time_iso_8601": "2025-09-18T11:32:17.350442Z",
            "url": "https://files.pythonhosted.org/packages/c4/70/51b9650b742637d846dd4344360c37f00c8d09c838128e55ff691f33f79a/sbr_model-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8e6a2840c0fc1bb4810c3f66ec10b4717311192e08744b5a37a9026860e43071",
                "md5": "e251b0711b728d196c63635404577b98",
                "sha256": "c6673f491aa6d268e65d960fbf2600aa0d6a6aba63728ee56f16b118f9201c5d"
            },
            "downloads": -1,
            "filename": "sbr_model-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "e251b0711b728d196c63635404577b98",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 4481,
            "upload_time": "2025-09-18T11:32:18",
            "upload_time_iso_8601": "2025-09-18T11:32:18.465813Z",
            "url": "https://files.pythonhosted.org/packages/8e/6a/2840c0fc1bb4810c3f66ec10b4717311192e08744b5a37a9026860e43071/sbr_model-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-18 11:32:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sbr-model"
}
        
Elapsed time: 2.47244s