# Stable Baselines Jax (SB3 + JAX = SBX)
See https://github.com/araffin/sbx
Proof of concept version of [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) in Jax.
Implemented algorithms:
- [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1801.01290) and [SAC-N](https://arxiv.org/abs/2110.01548)
- [Truncated Quantile Critics (TQC)](https://arxiv.org/abs/2005.04269)
- [Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)](https://openreview.net/forum?id=xCVJMsPv3RT)
- [Proximal Policy Optimization (PPO)](https://arxiv.org/abs/1707.06347)
- [Deep Q Network (DQN)](https://arxiv.org/abs/1312.5602)
- [Twin Delayed DDPG (TD3)](https://arxiv.org/abs/1802.09477)
- [Deep Deterministic Policy Gradient (DDPG)](https://arxiv.org/abs/1509.02971)
- [Batch Normalization in Deep Reinforcement Learning (CrossQ)](https://openreview.net/forum?id=PczQtTsTIX)
- [Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning (SimBa)](https://openreview.net/forum?id=jXLiDKsuDo)
## Example
```python
from sbx import DDPG, DQN, PPO, SAC, TD3, TQC, CrossQ
model = TQC("MlpPolicy", "Pendulum-v1", verbose=1)
model.learn(total_timesteps=10_000, progress_bar=True)
Raw data
{
"_id": null,
"home_page": "https://github.com/araffin/sbx",
"name": "sbx-rl",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "reinforcement-learning-algorithms reinforcement-learning machine-learning gym gymnasium jax openai stable baselines toolbox python data-science",
"author": "Antonin Raffin",
"author_email": "antonin.raffin@dlr.de",
"download_url": "https://files.pythonhosted.org/packages/91/5b/5b6ff86dc5601658a40aab6b4ccb09e81f76f517fb58b6a4b57c267a9cea/sbx_rl-0.20.0.tar.gz",
"platform": null,
"description": "\n\n# Stable Baselines Jax (SB3 + JAX = SBX)\n\nSee https://github.com/araffin/sbx\n\nProof of concept version of [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) in Jax.\n\nImplemented algorithms:\n- [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1801.01290) and [SAC-N](https://arxiv.org/abs/2110.01548)\n- [Truncated Quantile Critics (TQC)](https://arxiv.org/abs/2005.04269)\n- [Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)](https://openreview.net/forum?id=xCVJMsPv3RT)\n- [Proximal Policy Optimization (PPO)](https://arxiv.org/abs/1707.06347)\n- [Deep Q Network (DQN)](https://arxiv.org/abs/1312.5602)\n- [Twin Delayed DDPG (TD3)](https://arxiv.org/abs/1802.09477)\n- [Deep Deterministic Policy Gradient (DDPG)](https://arxiv.org/abs/1509.02971)\n- [Batch Normalization in Deep Reinforcement Learning (CrossQ)](https://openreview.net/forum?id=PczQtTsTIX)\n- [Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning (SimBa)](https://openreview.net/forum?id=jXLiDKsuDo)\n\n## Example\n\n```python\nfrom sbx import DDPG, DQN, PPO, SAC, TD3, TQC, CrossQ\n\nmodel = TQC(\"MlpPolicy\", \"Pendulum-v1\", verbose=1)\nmodel.learn(total_timesteps=10_000, progress_bar=True)\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Jax version of Stable Baselines, implementations of reinforcement learning algorithms.",
"version": "0.20.0",
"project_urls": {
"Homepage": "https://github.com/araffin/sbx"
},
"split_keywords": [
"reinforcement-learning-algorithms",
"reinforcement-learning",
"machine-learning",
"gym",
"gymnasium",
"jax",
"openai",
"stable",
"baselines",
"toolbox",
"python",
"data-science"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9629518f9a0042d218e06a56665e501fe7f9827a4bab25296d0544e3e928579b",
"md5": "f03ff6e666b576fa08f37255257b5166",
"sha256": "d187c702ae4908acf0a26a8284c5e1d4abdbebb66bc5d6dfdd275da8f150de33"
},
"downloads": -1,
"filename": "sbx_rl-0.20.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f03ff6e666b576fa08f37255257b5166",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 58787,
"upload_time": "2025-02-14T11:03:45",
"upload_time_iso_8601": "2025-02-14T11:03:45.278225Z",
"url": "https://files.pythonhosted.org/packages/96/29/518f9a0042d218e06a56665e501fe7f9827a4bab25296d0544e3e928579b/sbx_rl-0.20.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "915b5b6ff86dc5601658a40aab6b4ccb09e81f76f517fb58b6a4b57c267a9cea",
"md5": "3c685c6a5df296a08ca8bc7f02be3e51",
"sha256": "3a07b1f2f4fed0410981fed676ca9a6ef5c87c61fc0a71d047380a117c5fcac1"
},
"downloads": -1,
"filename": "sbx_rl-0.20.0.tar.gz",
"has_sig": false,
"md5_digest": "3c685c6a5df296a08ca8bc7f02be3e51",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 47318,
"upload_time": "2025-02-14T11:03:47",
"upload_time_iso_8601": "2025-02-14T11:03:47.350527Z",
"url": "https://files.pythonhosted.org/packages/91/5b/5b6ff86dc5601658a40aab6b4ccb09e81f76f517fb58b6a4b57c267a9cea/sbx_rl-0.20.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-14 11:03:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "araffin",
"github_project": "sbx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "sbx-rl"
}