# Stable Baselines Jax (SB3 + JAX = SBX)
See https://github.com/araffin/sbx
Proof of concept version of [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) in Jax.
Implemented algorithms:
- [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1801.01290) and [SAC-N](https://arxiv.org/abs/2110.01548)
- [Truncated Quantile Critics (TQC)](https://arxiv.org/abs/2005.04269)
- [Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)](https://openreview.net/forum?id=xCVJMsPv3RT)
- [Proximal Policy Optimization (PPO)](https://arxiv.org/abs/1707.06347)
- [Deep Q Network (DQN)](https://arxiv.org/abs/1312.5602)
- [Twin Delayed DDPG (TD3)](https://arxiv.org/abs/1802.09477)
- [Deep Deterministic Policy Gradient (DDPG)](https://arxiv.org/abs/1509.02971)
- [Batch Normalization in Deep Reinforcement Learning (CrossQ)](https://openreview.net/forum?id=PczQtTsTIX)
## Example
```python
from sbx import DDPG, DQN, PPO, SAC, TD3, TQC, CrossQ
model = TQC("MlpPolicy", "Pendulum-v1", verbose=1)
model.learn(total_timesteps=10_000, progress_bar=True)
Raw data
{
"_id": null,
"home_page": "https://github.com/araffin/sbx",
"name": "sbx-rl",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "reinforcement-learning-algorithms reinforcement-learning machine-learning gym openai stable baselines toolbox python data-science",
"author": "Antonin Raffin",
"author_email": "antonin.raffin@dlr.de",
"download_url": "https://files.pythonhosted.org/packages/c3/29/a2e6d594afa11093e6bc0067f44ce650e1f62fa25691b0f9df9d7365f3e8/sbx_rl-0.18.0.tar.gz",
"platform": null,
"description": "\n\n# Stable Baselines Jax (SB3 + JAX = SBX)\n\nSee https://github.com/araffin/sbx\n\nProof of concept version of [Stable-Baselines3](https://github.com/DLR-RM/stable-baselines3) in Jax.\n\nImplemented algorithms:\n- [Soft Actor-Critic (SAC)](https://arxiv.org/abs/1801.01290) and [SAC-N](https://arxiv.org/abs/2110.01548)\n- [Truncated Quantile Critics (TQC)](https://arxiv.org/abs/2005.04269)\n- [Dropout Q-Functions for Doubly Efficient Reinforcement Learning (DroQ)](https://openreview.net/forum?id=xCVJMsPv3RT)\n- [Proximal Policy Optimization (PPO)](https://arxiv.org/abs/1707.06347)\n- [Deep Q Network (DQN)](https://arxiv.org/abs/1312.5602)\n- [Twin Delayed DDPG (TD3)](https://arxiv.org/abs/1802.09477)\n- [Deep Deterministic Policy Gradient (DDPG)](https://arxiv.org/abs/1509.02971)\n- [Batch Normalization in Deep Reinforcement Learning (CrossQ)](https://openreview.net/forum?id=PczQtTsTIX)\n\n## Example\n\n```python\nfrom sbx import DDPG, DQN, PPO, SAC, TD3, TQC, CrossQ\n\nmodel = TQC(\"MlpPolicy\", \"Pendulum-v1\", verbose=1)\nmodel.learn(total_timesteps=10_000, progress_bar=True)\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Jax version of Stable Baselines, implementations of reinforcement learning algorithms.",
"version": "0.18.0",
"project_urls": {
"Homepage": "https://github.com/araffin/sbx"
},
"split_keywords": [
"reinforcement-learning-algorithms",
"reinforcement-learning",
"machine-learning",
"gym",
"openai",
"stable",
"baselines",
"toolbox",
"python",
"data-science"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f165ee9f52fb688fe9d3419a155319d25bcefc8df4a664bed3392f09deccb6a3",
"md5": "d0b49172c5a9828e19b9dffc763a9e40",
"sha256": "75ade634a33555ad4c4a81523bb0f99c89d1b3bc89fb74990ef87b22379abd9c"
},
"downloads": -1,
"filename": "sbx_rl-0.18.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d0b49172c5a9828e19b9dffc763a9e40",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 57080,
"upload_time": "2024-11-01T07:49:02",
"upload_time_iso_8601": "2024-11-01T07:49:02.047391Z",
"url": "https://files.pythonhosted.org/packages/f1/65/ee9f52fb688fe9d3419a155319d25bcefc8df4a664bed3392f09deccb6a3/sbx_rl-0.18.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c329a2e6d594afa11093e6bc0067f44ce650e1f62fa25691b0f9df9d7365f3e8",
"md5": "efb29d66eb406205ac36afebe1db4cd8",
"sha256": "670f2bf095ec21ba6f8171602294baf0123787fe7be6811ebab276fb5010b8b3"
},
"downloads": -1,
"filename": "sbx_rl-0.18.0.tar.gz",
"has_sig": false,
"md5_digest": "efb29d66eb406205ac36afebe1db4cd8",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 44216,
"upload_time": "2024-11-01T07:49:04",
"upload_time_iso_8601": "2024-11-01T07:49:04.283674Z",
"url": "https://files.pythonhosted.org/packages/c3/29/a2e6d594afa11093e6bc0067f44ce650e1f62fa25691b0f9df9d7365f3e8/sbx_rl-0.18.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-01 07:49:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "araffin",
"github_project": "sbx",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "sbx-rl"
}