We present scBridge, a sophisticated framework for bidirectional cross-modal translation between scRNA-seq and scDNAm profiles with broad biological applicability. scBridge adopts a dual-channel variational autoencoder (VAE) architecture to project scRNA-seq and scDNAm data into a unified latent space, enabling effective cross-modal alignment and translation. To adaptively capture the context-dependent DNA methylation patterns related to gene regulation, we introduce Mixture-of-Experts (MoE) mechanism, which introduces a gating network to dynamically assign input cells to specialized expert subnetworks. .
Raw data
{
"_id": null,
"home_page": null,
"name": "scBridge",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "single cell, cross-modality translation, DNA Methylation",
"author": "PiperL",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/38/cd/722246faef0208debcb0558dd95d8eae0ba6b57854eec9bfb4b1761a900f/scbridge-1.1.tar.gz",
"platform": null,
"description": "We present scBridge, a sophisticated framework for bidirectional cross-modal translation between scRNA-seq and scDNAm profiles with broad biological applicability. scBridge adopts a dual-channel variational autoencoder (VAE) architecture to project scRNA-seq and scDNAm data into a unified latent space, enabling effective cross-modal alignment and translation. To adaptively capture the context-dependent DNA methylation patterns related to gene regulation, we introduce Mixture-of-Experts (MoE) mechanism, which introduces a gating network to dynamically assign input cells to specialized expert subnetworks. .\n",
"bugtrack_url": null,
"license": "MIT Licence",
"summary": "A single-cell cross-modality translation method specifically between RNA data and DNA methylation data.",
"version": "1.1",
"project_urls": null,
"split_keywords": [
"single cell",
" cross-modality translation",
" dna methylation"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "2d0a595fdd2a49880ba55de93b33704dddfe310fc50b7b67b6a4c7cad650e893",
"md5": "483b0f2ca584cb742578cb848df4c9af",
"sha256": "1567007467adeacf5b443dc858eec40f3efd5b883911158590e31a45010b4f21"
},
"downloads": -1,
"filename": "scbridge-1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "483b0f2ca584cb742578cb848df4c9af",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 27768,
"upload_time": "2025-07-10T13:58:23",
"upload_time_iso_8601": "2025-07-10T13:58:23.174649Z",
"url": "https://files.pythonhosted.org/packages/2d/0a/595fdd2a49880ba55de93b33704dddfe310fc50b7b67b6a4c7cad650e893/scbridge-1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "38cd722246faef0208debcb0558dd95d8eae0ba6b57854eec9bfb4b1761a900f",
"md5": "0261bb90a64db7d46f493e21159728dd",
"sha256": "2fdc268be98873ae13320896a0e589fd1ae27722e6320a354156655f7c558bc1"
},
"downloads": -1,
"filename": "scbridge-1.1.tar.gz",
"has_sig": false,
"md5_digest": "0261bb90a64db7d46f493e21159728dd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 25632,
"upload_time": "2025-07-10T13:58:24",
"upload_time_iso_8601": "2025-07-10T13:58:24.361820Z",
"url": "https://files.pythonhosted.org/packages/38/cd/722246faef0208debcb0558dd95d8eae0ba6b57854eec9bfb4b1761a900f/scbridge-1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-10 13:58:24",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "scbridge"
}