# scevow
> scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
> scevow: 通过单细胞分辨率下的加权随机游走对突变功能映射进行优化
## 1. 介绍
## 2. 上传
> upload
> test
```shell
python3 -m build
twine check dist/*
twine upload --repository testpypi dist/*
```
> production
```shell
python3 -m build
twine check dist/*
twine upload dist/*
```
## 3. 使用
```shell
vim ~/.bashrc
export OMP_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1
source ~/.bashrc
```
> test
```shell
pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip3 install scLift -i https://test.pypi.org/simple/
```
> production
```shell
pip3 install scLift
```
Raw data
{
"_id": null,
"home_page": null,
"name": "scLift",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "YKenan, Yu Zhengmin, scATAC-seq, Fine-mapping, Single-cell epiomics",
"author": null,
"author_email": "Yu Zhengmin <3236170161@qq.com>",
"download_url": "https://files.pythonhosted.org/packages/fd/6d/8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217/sclift-0.0.56.tar.gz",
"platform": null,
"description": "# scevow\n\n> scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution\n\n> scevow: \u901a\u8fc7\u5355\u7ec6\u80de\u5206\u8fa8\u7387\u4e0b\u7684\u52a0\u6743\u968f\u673a\u6e38\u8d70\u5bf9\u7a81\u53d8\u529f\u80fd\u6620\u5c04\u8fdb\u884c\u4f18\u5316\n\n## 1. \u4ecb\u7ecd\n\n## 2. \u4e0a\u4f20\n\n> upload\n\n> test\n\n```shell\npython3 -m build\ntwine check dist/*\ntwine upload --repository testpypi dist/*\n```\n\n> production\n\n```shell\npython3 -m build\ntwine check dist/*\ntwine upload dist/*\n```\n\n## 3. \u4f7f\u7528\n\n```shell\nvim ~/.bashrc\nexport OMP_NUM_THREADS=1\nexport OPENBLAS_NUM_THREADS=1\nsource ~/.bashrc\n\n```\n\n> test\n\n```shell\npip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com\npip3 install scLift -i https://test.pypi.org/simple/\n```\n\n> production\n\n```shell\npip3 install scLift\n\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution",
"version": "0.0.56",
"project_urls": {
"gitee": "https://gitee.com/ykenan_yingying/scLift"
},
"split_keywords": [
"ykenan",
" yu zhengmin",
" scatac-seq",
" fine-mapping",
" single-cell epiomics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "60907245094fd29e60d2f8f93245b8463890c493e646ceb213add300ecb0df3e",
"md5": "c8ceac613bee97590264660474a8fe5a",
"sha256": "04153f1badf331c22ed1e78a27f5a1dd97ff500893ea652007b2be18fa209f4e"
},
"downloads": -1,
"filename": "scLift-0.0.56-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c8ceac613bee97590264660474a8fe5a",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 75968,
"upload_time": "2024-10-11T07:01:54",
"upload_time_iso_8601": "2024-10-11T07:01:54.099645Z",
"url": "https://files.pythonhosted.org/packages/60/90/7245094fd29e60d2f8f93245b8463890c493e646ceb213add300ecb0df3e/scLift-0.0.56-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fd6d8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217",
"md5": "73e7d7dfaeec60b2bf5e1ffb23c7f6d7",
"sha256": "9d7a5367d113d9190ba3e272f47749bd4af9bed1ddb0d6764764c198bafc1cd8"
},
"downloads": -1,
"filename": "sclift-0.0.56.tar.gz",
"has_sig": false,
"md5_digest": "73e7d7dfaeec60b2bf5e1ffb23c7f6d7",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 61263,
"upload_time": "2024-10-11T07:01:56",
"upload_time_iso_8601": "2024-10-11T07:01:56.691995Z",
"url": "https://files.pythonhosted.org/packages/fd/6d/8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217/sclift-0.0.56.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-11 07:01:56",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "sclift"
}