scLift


NamescLift JSON
Version 0.0.56 PyPI version JSON
download
home_pageNone
Summaryscevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution
upload_time2024-10-11 07:01:56
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords ykenan yu zhengmin scatac-seq fine-mapping single-cell epiomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # scevow

> scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution

> scevow: 通过单细胞分辨率下的加权随机游走对突变功能映射进行优化

## 1. 介绍

## 2. 上传

> upload

> test

```shell
python3 -m build
twine check dist/*
twine upload --repository testpypi dist/*
```

> production

```shell
python3 -m build
twine check dist/*
twine upload dist/*
```

## 3. 使用

```shell
vim ~/.bashrc
export OMP_NUM_THREADS=1
export OPENBLAS_NUM_THREADS=1
source ~/.bashrc

```

> test

```shell
pip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com
pip3 install scLift -i https://test.pypi.org/simple/
```

> production

```shell
pip3 install scLift

```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scLift",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "YKenan, Yu Zhengmin, scATAC-seq, Fine-mapping, Single-cell epiomics",
    "author": null,
    "author_email": "Yu Zhengmin <3236170161@qq.com>",
    "download_url": "https://files.pythonhosted.org/packages/fd/6d/8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217/sclift-0.0.56.tar.gz",
    "platform": null,
    "description": "# scevow\n\n> scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution\n\n> scevow: \u901a\u8fc7\u5355\u7ec6\u80de\u5206\u8fa8\u7387\u4e0b\u7684\u52a0\u6743\u968f\u673a\u6e38\u8d70\u5bf9\u7a81\u53d8\u529f\u80fd\u6620\u5c04\u8fdb\u884c\u4f18\u5316\n\n## 1. \u4ecb\u7ecd\n\n## 2. \u4e0a\u4f20\n\n> upload\n\n> test\n\n```shell\npython3 -m build\ntwine check dist/*\ntwine upload --repository testpypi dist/*\n```\n\n> production\n\n```shell\npython3 -m build\ntwine check dist/*\ntwine upload dist/*\n```\n\n## 3. \u4f7f\u7528\n\n```shell\nvim ~/.bashrc\nexport OMP_NUM_THREADS=1\nexport OPENBLAS_NUM_THREADS=1\nsource ~/.bashrc\n\n```\n\n> test\n\n```shell\npip3 install -r requirements.txt -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host mirrors.aliyun.com\npip3 install scLift -i https://test.pypi.org/simple/\n```\n\n> production\n\n```shell\npip3 install scLift\n\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "scevow: Excellent optimization of variant function mapping through weighted random walks at single-cell resolution",
    "version": "0.0.56",
    "project_urls": {
        "gitee": "https://gitee.com/ykenan_yingying/scLift"
    },
    "split_keywords": [
        "ykenan",
        " yu zhengmin",
        " scatac-seq",
        " fine-mapping",
        " single-cell epiomics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "60907245094fd29e60d2f8f93245b8463890c493e646ceb213add300ecb0df3e",
                "md5": "c8ceac613bee97590264660474a8fe5a",
                "sha256": "04153f1badf331c22ed1e78a27f5a1dd97ff500893ea652007b2be18fa209f4e"
            },
            "downloads": -1,
            "filename": "scLift-0.0.56-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c8ceac613bee97590264660474a8fe5a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 75968,
            "upload_time": "2024-10-11T07:01:54",
            "upload_time_iso_8601": "2024-10-11T07:01:54.099645Z",
            "url": "https://files.pythonhosted.org/packages/60/90/7245094fd29e60d2f8f93245b8463890c493e646ceb213add300ecb0df3e/scLift-0.0.56-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd6d8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217",
                "md5": "73e7d7dfaeec60b2bf5e1ffb23c7f6d7",
                "sha256": "9d7a5367d113d9190ba3e272f47749bd4af9bed1ddb0d6764764c198bafc1cd8"
            },
            "downloads": -1,
            "filename": "sclift-0.0.56.tar.gz",
            "has_sig": false,
            "md5_digest": "73e7d7dfaeec60b2bf5e1ffb23c7f6d7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 61263,
            "upload_time": "2024-10-11T07:01:56",
            "upload_time_iso_8601": "2024-10-11T07:01:56.691995Z",
            "url": "https://files.pythonhosted.org/packages/fd/6d/8383d53eb62a052fed0658074c3e4e27588cb18744ebb17ec019cb20c217/sclift-0.0.56.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-11 07:01:56",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sclift"
}
        
Elapsed time: 5.90283s