scaling-vin-pytorch


Namescaling-vin-pytorch JSON
Version 0.0.12 PyPI version JSON
download
home_pageNone
SummaryScaling Value Iteration Networks
upload_time2024-09-23 20:02:09
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT License Copyright (c) 2024 Phil Wang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords artificial intelligence deep learning planning value iteration network
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <img src="./vin.png" width="400px"></img>

## Scaling Value Iteration Networks

Exploration into the <a href="https://arxiv.org/abs/2406.08404">Scaling Value Iteration Networks</a> paper, from Schmidhuber's group

## Usage

```python
import torch
from scaling_vin_pytorch import ScalableVIN

scalable_vin = ScalableVIN(
    state_dim = 3,
    reward_dim = 2,
    num_actions = 10
)

state = torch.randn(2, 3, 32, 32)
reward = torch.randn(2, 2, 32, 32)

agent_positions = torch.randint(0, 32, (2, 2))

target_actions = torch.randint(0, 10, (2,))

loss = scalable_vin(
    state,
    reward,
    agent_positions,
    target_actions
)

loss.backward()

action_logits = scalable_vin(
    state,
    reward,
    agent_positions
)
```

## Citations

```bibtex
@article{Wang2024ScalingVI,
    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},
    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\"u}rgen Schmidhuber},
    journal = {ArXiv},
    year    = {2024},
    volume  = {abs/2406.08404},
    url     = {https://api.semanticscholar.org/CorpusID:270391752}
}
```

```bibtex
@misc{pflueger2018soft,
    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},
    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},
    year    = {2018},
    url     = {https://openreview.net/forum?id=Sktm4zWRb},
}
```

```bibtex
@inproceedings{Tamar2016ValueIN,
    title   = {Value Iteration Networks},
    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},
    booktitle = {Neural Information Processing Systems},
    year    = {2016},
    url     = {https://api.semanticscholar.org/CorpusID:11374605}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scaling-vin-pytorch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, planning, value iteration network",
    "author": null,
    "author_email": "Phil Wang <lucidrains@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/16/50/28e91642d15d7e84d41c6ddde47315628c9c61844b20503b657cd6d4c791/scaling_vin_pytorch-0.0.12.tar.gz",
    "platform": null,
    "description": "<img src=\"./vin.png\" width=\"400px\"></img>\n\n## Scaling Value Iteration Networks\n\nExploration into the <a href=\"https://arxiv.org/abs/2406.08404\">Scaling Value Iteration Networks</a> paper, from Schmidhuber's group\n\n## Usage\n\n```python\nimport torch\nfrom scaling_vin_pytorch import ScalableVIN\n\nscalable_vin = ScalableVIN(\n    state_dim = 3,\n    reward_dim = 2,\n    num_actions = 10\n)\n\nstate = torch.randn(2, 3, 32, 32)\nreward = torch.randn(2, 2, 32, 32)\n\nagent_positions = torch.randint(0, 32, (2, 2))\n\ntarget_actions = torch.randint(0, 10, (2,))\n\nloss = scalable_vin(\n    state,\n    reward,\n    agent_positions,\n    target_actions\n)\n\nloss.backward()\n\naction_logits = scalable_vin(\n    state,\n    reward,\n    agent_positions\n)\n```\n\n## Citations\n\n```bibtex\n@article{Wang2024ScalingVI,\n    title   = {Scaling Value Iteration Networks to 5000 Layers for Extreme Long-Term Planning},\n    author  = {Yuhui Wang and Qingyuan Wu and Weida Li and Dylan R. Ashley and Francesco Faccio and Chao Huang and J{\\\"u}rgen Schmidhuber},\n    journal = {ArXiv},\n    year    = {2024},\n    volume  = {abs/2406.08404},\n    url     = {https://api.semanticscholar.org/CorpusID:270391752}\n}\n```\n\n```bibtex\n@misc{pflueger2018soft,\n    title   = {Soft Value Iteration Networks for Planetary Rover Path Planning},\n    author  = {Max Pflueger and Ali Agha and Gaurav S. Sukhatme},\n    year    = {2018},\n    url     = {https://openreview.net/forum?id=Sktm4zWRb},\n}\n```\n\n```bibtex\n@inproceedings{Tamar2016ValueIN,\n    title   = {Value Iteration Networks},\n    author  = {Aviv Tamar and Sergey Levine and P. Abbeel and Yi Wu and Garrett Thomas},\n    booktitle = {Neural Information Processing Systems},\n    year    = {2016},\n    url     = {https://api.semanticscholar.org/CorpusID:11374605}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2024 Phil Wang  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.",
    "summary": "Scaling Value Iteration Networks",
    "version": "0.0.12",
    "project_urls": {
        "Homepage": "https://pypi.org/project/scaling-vin-pytorch/",
        "Repository": "https://github.com/lucidrains/scaling-vin-pytorch"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " planning",
        " value iteration network"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "35deb0e3b7c324cd09ab0e1ce38047fb26d8a0ad8d9c7591a4d66cf0b280de1e",
                "md5": "91d45510277327f4f084899160fdfee5",
                "sha256": "7d4b12aab9f04e9df292f9ffacce75148365691c3d4dec6968a11943932dc756"
            },
            "downloads": -1,
            "filename": "scaling_vin_pytorch-0.0.12-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "91d45510277327f4f084899160fdfee5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 12666,
            "upload_time": "2024-09-23T20:02:07",
            "upload_time_iso_8601": "2024-09-23T20:02:07.547124Z",
            "url": "https://files.pythonhosted.org/packages/35/de/b0e3b7c324cd09ab0e1ce38047fb26d8a0ad8d9c7591a4d66cf0b280de1e/scaling_vin_pytorch-0.0.12-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "165028e91642d15d7e84d41c6ddde47315628c9c61844b20503b657cd6d4c791",
                "md5": "dc7138ef7e5bbcfcdd32024215f9fe7a",
                "sha256": "81d587bbd8985071b08a4dcfc26662ba1bba4c8f62819af35b5578c1adb0608b"
            },
            "downloads": -1,
            "filename": "scaling_vin_pytorch-0.0.12.tar.gz",
            "has_sig": false,
            "md5_digest": "dc7138ef7e5bbcfcdd32024215f9fe7a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 1165277,
            "upload_time": "2024-09-23T20:02:09",
            "upload_time_iso_8601": "2024-09-23T20:02:09.629367Z",
            "url": "https://files.pythonhosted.org/packages/16/50/28e91642d15d7e84d41c6ddde47315628c9c61844b20503b657cd6d4c791/scaling_vin_pytorch-0.0.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-23 20:02:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lucidrains",
    "github_project": "scaling-vin-pytorch",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scaling-vin-pytorch"
}
        
Elapsed time: 0.94085s