Name | schemarrow JSON |
Version |
0.1.0a0
JSON |
| download |
home_page | |
Summary | right out of the box mljar pipeline. |
upload_time | 2024-03-06 15:35:33 |
maintainer | |
docs_url | None |
author | DanielAvdar |
requires_python | >=3.9,<3.13 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# SchemArrow
[![PyPI version](https://img.shields.io/pypi/v/SchemArrow)](https://img.shields.io/pypi/v/SchemArrow)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/SchemArrow)](https://pypi.org/project/SchemArrow/)
[![Tests](https://github.com/DanielAvdar/SchemArrow/actions/workflows/ci.yml/badge.svg)](https://github.com/DanielAvdar/SchemArrow/actions/workflows/ci.yml)
[![Code Checks](https://github.com/DanielAvdar/SchemArrow/actions/workflows/code-checks.yml/badge.svg)](https://github.com/DanielAvdar/SchemArrow/actions/workflows/code-checks.yml)
[![License](https://img.shields.io/:license-MIT-blue.svg)](https://opensource.org/license/mit/)
[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/SchemArrow)](https://pypi.org/project/SchemArrow/)
![OS](https://img.shields.io/badge/ubuntu-blue?logo=ubuntu)
![OS](https://img.shields.io/badge/win-blue?logo=windows)
![OS](https://img.shields.io/badge/mac-blue?logo=apple)
`SchemArrow` simplifies the conversion between pandas and Arrow DataFrames, allowing you to seamlessly switch back and forth.
**Get started:**
## Get started:
### Installation
To install the package use pip:
```bash
pip install schemarrow
```
### Usage
```python
import pandas as pd
from schemarrow import SchemArrow
# Create a pandas DataFrame
df = pd.DataFrame({
'A': [1, 2, 3],
'B': ['a', 'b', 'c'],
'C': [1.1, 2.2, 3.3],
'D': [True, False, True]
})
# Instantiate a SchemArrow object
arrow_schema = SchemArrow()
# Convert the pandas DataFrame dtypes to arrow dtypes
df_pa: pd.DataFrame = arrow_schema(df)
print(df_pa.dtypes)
```
outputs:
```
A int64[pyarrow]
B string[pyarrow]
C double[pyarrow]
D bool[pyarrow]
dtype: object
```
Raw data
{
"_id": null,
"home_page": "",
"name": "schemarrow",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.9,<3.13",
"maintainer_email": "",
"keywords": "",
"author": "DanielAvdar",
"author_email": "66269169+DanielAvdar@users.noreply.github.com",
"download_url": "https://files.pythonhosted.org/packages/21/29/4eb4d90cafade55fb97f7d4399da5562f73695b4c1f77856e3b1b9adc910/schemarrow-0.1.0a0.tar.gz",
"platform": null,
"description": "\n\n\n\n# SchemArrow\n[![PyPI version](https://img.shields.io/pypi/v/SchemArrow)](https://img.shields.io/pypi/v/SchemArrow)\n[![PyPI - Downloads](https://img.shields.io/pypi/dm/SchemArrow)](https://pypi.org/project/SchemArrow/)\n[![Tests](https://github.com/DanielAvdar/SchemArrow/actions/workflows/ci.yml/badge.svg)](https://github.com/DanielAvdar/SchemArrow/actions/workflows/ci.yml)\n[![Code Checks](https://github.com/DanielAvdar/SchemArrow/actions/workflows/code-checks.yml/badge.svg)](https://github.com/DanielAvdar/SchemArrow/actions/workflows/code-checks.yml)\n[![License](https://img.shields.io/:license-MIT-blue.svg)](https://opensource.org/license/mit/)\n[![PyPI - Python Version](https://img.shields.io/pypi/pyversions/SchemArrow)](https://pypi.org/project/SchemArrow/)\n![OS](https://img.shields.io/badge/ubuntu-blue?logo=ubuntu)\n![OS](https://img.shields.io/badge/win-blue?logo=windows)\n![OS](https://img.shields.io/badge/mac-blue?logo=apple)\n\n`SchemArrow` simplifies the conversion between pandas and Arrow DataFrames, allowing you to seamlessly switch back and forth.\n**Get started:**\n## Get started:\n### Installation\nTo install the package use pip:\n\n```bash\npip install schemarrow\n```\n### Usage\n\n```python\nimport pandas as pd\nfrom schemarrow import SchemArrow\n\n# Create a pandas DataFrame\ndf = pd.DataFrame({\n 'A': [1, 2, 3],\n 'B': ['a', 'b', 'c'],\n 'C': [1.1, 2.2, 3.3],\n 'D': [True, False, True]\n})\n\n# Instantiate a SchemArrow object\narrow_schema = SchemArrow()\n\n# Convert the pandas DataFrame dtypes to arrow dtypes\ndf_pa: pd.DataFrame = arrow_schema(df)\n\nprint(df_pa.dtypes)\n```\noutputs:\n```\nA int64[pyarrow]\nB string[pyarrow]\nC double[pyarrow]\nD bool[pyarrow]\ndtype: object\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "right out of the box mljar pipeline.",
"version": "0.1.0a0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "585a57d83b503bdc58fb21b8b4edbd6bd3d81c72aba6ac833ae9b37ff0da1a9d",
"md5": "1a4a6eb6637fd9329dee695f59376fee",
"sha256": "c6d8a67214db25051d419811aafb19da6306cf30b2e9b83b5e6fae6cc126f868"
},
"downloads": -1,
"filename": "schemarrow-0.1.0a0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1a4a6eb6637fd9329dee695f59376fee",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9,<3.13",
"size": 5375,
"upload_time": "2024-03-06T15:35:31",
"upload_time_iso_8601": "2024-03-06T15:35:31.994100Z",
"url": "https://files.pythonhosted.org/packages/58/5a/57d83b503bdc58fb21b8b4edbd6bd3d81c72aba6ac833ae9b37ff0da1a9d/schemarrow-0.1.0a0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "21294eb4d90cafade55fb97f7d4399da5562f73695b4c1f77856e3b1b9adc910",
"md5": "3678ca33dde1fb728757c12928c75b65",
"sha256": "0b28daee1aaafe5eb57179f26094b741c46c1f24b745f419ccb920bc094a56d3"
},
"downloads": -1,
"filename": "schemarrow-0.1.0a0.tar.gz",
"has_sig": false,
"md5_digest": "3678ca33dde1fb728757c12928c75b65",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9,<3.13",
"size": 3666,
"upload_time": "2024-03-06T15:35:33",
"upload_time_iso_8601": "2024-03-06T15:35:33.732530Z",
"url": "https://files.pythonhosted.org/packages/21/29/4eb4d90cafade55fb97f7d4399da5562f73695b4c1f77856e3b1b9adc910/schemarrow-0.1.0a0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-03-06 15:35:33",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "schemarrow"
}