Name | scholarmetrics JSON |
Version |
0.2.2
JSON |
| download |
home_page | |
Summary | Compute scholarly metrics in Python with Pandas and NumPy Edit |
upload_time | 2023-04-22 17:13:22 |
maintainer | |
docs_url | None |
author | |
requires_python | |
license | MIT |
keywords |
metrics
researchers
scientists
academics
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
===============================
scholarmetrics
===============================
Compute scholarly metrics in Python with Pandas and NumPy.
**Documentation**: https://scholarmetrics.readthedocs.io.
.. image:: https://img.shields.io/pypi/v/scholarmetrics.svg
:target: https://pypi.python.org/pypi/scholarmetrics
.. image:: https://readthedocs.org/projects/scholarmetrics/badge/?version=latest
:target: https://scholarmetrics.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://codeclimate.com/github/Michael-E-Rose/scholarmetrics/badges/gpa.svg
:target: https://codeclimate.com/github/Michael-E-Rose/scholarmetrics
:alt: Code Climate
.. image:: https://travis-ci.org/Michael-E-Rose/scholarmetrics.svg?branch=master
:target: https://travis-ci.org/Michael-E-Rose/scholarmetrics
:alt: Build Status
Examples
--------
* J.E. Hirsch's h-index or Hirsch-index:
.. code:: python
>>> from scholarmetrics import hindex
>>> citations = [6, 10, 5, 46, 0, 2]
>>> hindex(citations)
4
* Euclidean index:
.. code:: python
>>> from scholarmetrics import euclidean
>>> citations = [6, 10, 5, 46, 0, 2]
>>> euclidean(citations)
47.75981574503821
Contributing
------------
.. image:: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat
:target: https://github.com/Michael-E-Rose/scholarmetrics/issues
:alt: Contributions welcome
Please see `CONTRIBUTING.rst <CONTRIBUTING.rst>`_.
For a list of contributors see `AUTHORS.rst <AUTHORS.rst>`_.
License
-------
MIT License, see `LICENSE <LICENSE>`_.
Raw data
{
"_id": null,
"home_page": "",
"name": "scholarmetrics",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "\"Michael E. Rose\" <Michael.Ernst.Rose@gmail.com>",
"keywords": "metrics,researchers,scientists,academics",
"author": "",
"author_email": "\"Michael E. Rose\" <Michael.Ernst.Rose@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/06/f1/8cad07e56b399e33eb8e6564cf0d6f93562b73f4158daca849c53ec28a49/scholarmetrics-0.2.2.tar.gz",
"platform": null,
"description": "===============================\nscholarmetrics\n===============================\n\nCompute scholarly metrics in Python with Pandas and NumPy.\n\n\n**Documentation**: https://scholarmetrics.readthedocs.io.\n\n.. image:: https://img.shields.io/pypi/v/scholarmetrics.svg\n :target: https://pypi.python.org/pypi/scholarmetrics\n\n.. image:: https://readthedocs.org/projects/scholarmetrics/badge/?version=latest\n :target: https://scholarmetrics.readthedocs.io/en/latest/?badge=latest\n :alt: Documentation Status\n\n.. image:: https://codeclimate.com/github/Michael-E-Rose/scholarmetrics/badges/gpa.svg\n :target: https://codeclimate.com/github/Michael-E-Rose/scholarmetrics\n :alt: Code Climate\n\n.. image:: https://travis-ci.org/Michael-E-Rose/scholarmetrics.svg?branch=master\n :target: https://travis-ci.org/Michael-E-Rose/scholarmetrics\n :alt: Build Status\n\n\nExamples\n--------\n\n* J.E. Hirsch's h-index or Hirsch-index:\n\n.. code:: python\n\n >>> from scholarmetrics import hindex\n >>> citations = [6, 10, 5, 46, 0, 2]\n >>> hindex(citations)\n 4\n\n* Euclidean index:\n\n.. code:: python\n\n >>> from scholarmetrics import euclidean\n >>> citations = [6, 10, 5, 46, 0, 2]\n >>> euclidean(citations)\n 47.75981574503821\n\n\nContributing\n------------\n\n.. image:: https://img.shields.io/badge/contributions-welcome-brightgreen.svg?style=flat\n :target: https://github.com/Michael-E-Rose/scholarmetrics/issues\n :alt: Contributions welcome\n\nPlease see `CONTRIBUTING.rst <CONTRIBUTING.rst>`_.\n\nFor a list of contributors see `AUTHORS.rst <AUTHORS.rst>`_.\n\nLicense\n-------\nMIT License, see `LICENSE <LICENSE>`_.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Compute scholarly metrics in Python with Pandas and NumPy Edit",
"version": "0.2.2",
"split_keywords": [
"metrics",
"researchers",
"scientists",
"academics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ea6881001732de2ead6cf6ae9fec18fe49bfd65008576ce865bc4d5e72cdc172",
"md5": "6b58c8cb2c3b4b5c17f9de91a12fb285",
"sha256": "c4dfb374c05fcd3bd30c891760faec0c5c863ecce8cce1d0f0b02ea1fe19c0b5"
},
"downloads": -1,
"filename": "scholarmetrics-0.2.2-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "6b58c8cb2c3b4b5c17f9de91a12fb285",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 5949,
"upload_time": "2023-04-22T17:13:20",
"upload_time_iso_8601": "2023-04-22T17:13:20.896530Z",
"url": "https://files.pythonhosted.org/packages/ea/68/81001732de2ead6cf6ae9fec18fe49bfd65008576ce865bc4d5e72cdc172/scholarmetrics-0.2.2-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "06f18cad07e56b399e33eb8e6564cf0d6f93562b73f4158daca849c53ec28a49",
"md5": "a6aefaefb8897366f76812c03435003a",
"sha256": "5bd590a109c78c9c017758db3da778ef51876e9e7c8988a9070641af21bc26ac"
},
"downloads": -1,
"filename": "scholarmetrics-0.2.2.tar.gz",
"has_sig": false,
"md5_digest": "a6aefaefb8897366f76812c03435003a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 15873,
"upload_time": "2023-04-22T17:13:22",
"upload_time_iso_8601": "2023-04-22T17:13:22.792105Z",
"url": "https://files.pythonhosted.org/packages/06/f1/8cad07e56b399e33eb8e6564cf0d6f93562b73f4158daca849c53ec28a49/scholarmetrics-0.2.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-22 17:13:22",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "scholarmetrics"
}