_ __ _ __ __ _ __
_____ _____ (_)/ /__ (_)/ /_ ____/ /___ _____ (_)____/ /___
/ ___// ___// // //_// // __/______ / __ // _ \ / ___// // __ // _ \
(__ )/ /__ / // ,< / // /_ /_____// /_/ // __// /__ / // /_/ // __/
/____/ \___//_//_/|_|/_/ \__/ \__,_/ \___/ \___//_/ \__,_/ \___/
<br>
<p align="center">
<a href="https://github.com/airbus/scikit-decide/actions/workflows/ci.yml?query=branch%3Amaster">
<img src="https://img.shields.io/github/actions/workflow/status/airbus/scikit-decide/ci.yml?branch=master&logo=github&label=CI%20status" alt="actions status">
</a>
<a href="https://github.com/airbus/scikit-decide/tags">
<img src="https://img.shields.io/github/tag/airbus/scikit-decide.svg?label=current%20version" alt="version">
</a>
<a href="https://github.com/airbus/scikit-decide/stargazers">
<img src="https://img.shields.io/github/stars/airbus/scikit-decide.svg" alt="stars">
</a>
<a href="https://github.com/airbus/scikit-decide/network">
<img src="https://img.shields.io/github/forks/airbus/scikit-decide.svg" alt="forks">
</a>
</p>
<br>
# Scikit-decide for Python
Scikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling.
This framework was initiated at [Airbus](https://www.airbus.com) AI Research and notably received contributions through the [ANITI](https://aniti.univ-toulouse.fr/en/) and [TUPLES](https://tuples.ai/) projects, and also from [ANU](https://www.anu.edu.au/).
## Main features
<!--features-list-start-->
- **Problem solving:** describe your decision-making problem once and auto-match compatible solvers.\
_For instance planning/scheduling problems can be solved by RL solvers using GNNs._
- **Growing catalog:** enjoy a growing list of domains & solvers catalog, supported by the community.
- **Open & Extensible:** scikit-decide is open source and is able to wrap existing state-of-the-art domains/solvers.
- **Domains available:**
- [Gym(nasium)](https://gymnasium.farama.org/) environments for reinforcement learning (RL)
- [PDDL](https://planning.wiki/) (Planning Domain Definition Language) via [unified-planning](https://github.com/aiplan4eu/unified-planning) and [plado](https://github.com/massle/plado) libraries
- encoding in gym(nasium) spaces compatible with RL
- graph representations for RL (inspired by [Lifted Learning Graph](https://doi.org/10.1609/aaai.v38i18.29986)) :new:
- [RDDL](https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf) (Relational Dynamic Influence Diagram Language) using [pyrddl-gym](https://github.com/pyrddlgym-project) library.
- Flight planning, based on [openap](https://openap.dev/) or in-house Poll-Schumann for performance model
- Scheduling, based on rcpsp problem from [discrete-optimization](https://airbus.github.io/discrete-optimization) library
- Toy domains like: maze, mastermind, rock-paper-scissors
- **Solvers available:**
- RL solvers from ray.rllib and stable-baselines3
- existing algos with action masking
- adaptation of RL algos for graph observation, based on GNNs from [pytorch-geometric](https://pytorch-geometric.readthedocs.io/) :new:
- autoregressive models with action masking component by component for parametric actions :new:
- Planning solvers from [unified-planning](https://github.com/aiplan4eu/unified-planning) library
- RDDL solvers jax and gurobi-based based on pyRDDLGym-jax and pyRDDLGym-gurobi from [pyrddl-gym project](https://github.com/pyrddlgym-project)
- Search solvers coded in scikit-decide library:
- A*
- AO*
- Improved-LAO*
- Learning Real-Time A*
- Best First Width Search
- Labeled RTDP
- Multi-Agent RTDP
- Iterated Width search (IW)
- Rollout IW (RIW)
- Partially-Observable Monte Carlo Planning (POMCP)
- Monte Carlo Tree Search Methods (MCTS)
- Multi-Agent Heuristic meta-solver (MAHD)
- Evolution strategy: Cartesian Genetic Programming (CGP)
- Scheduling solvers from [discrete-optimization](https://airbus.github.io/discrete-optimization),
- itself wrapping [ortools](https://developers.google.com/optimization), [gurobi](https://www.gurobi.com/),
[toulbar](https://toulbar2.github.io/toulbar2/#), [minizinc](https://www.minizinc.org/),
[deap](https://deap.readthedocs.io/) (genetic algorithm), [didppy](https://didppy.readthedocs.io/) (dynamic programming),
- and coding local search (hill climber, simulated annealing), Large Neighborhood Search (LNS), and
genetic programming based hyper-heuristic (GPHH)
- **Tuning solvers hyperparameters**
- hyperparameters definition
- automated study with optuna
<!--features-list-end-->
## Installation
Quick version:
```shell
pip install scikit-decide[all]
```
For more details, see the [online documentation](https://airbus.github.io/scikit-decide/install).
## Documentation
The latest documentation is available [online](https://airbus.github.io/scikit-decide).
## Examples
Some educational notebooks are available in `notebooks/` folder.
Links to launch them online with [binder](https://mybinder.org/) are provided in the
[Notebooks section](https://airbus.github.io/scikit-decide/notebooks) of the online documentation.
More examples can be found as Python scripts in the `examples/` folder, showing how to import or define a domain,
and how to run or solve it. Most of the examples rely on scikit-decide Hub, an extensible catalog of domains/solvers.
## Contributing
See more about how to contribute in the [online documentation](https://airbus.github.io/scikit-decide/contribute).
Raw data
{
"_id": null,
"home_page": null,
"name": "scikit-decide",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.9",
"maintainer_email": null,
"keywords": "reinforcement learning, planning, scheduling",
"author": "Airbus AI Research",
"author_email": "scikit-decide@airbus.com",
"download_url": null,
"platform": null,
"description": "\n _ __ _ __ __ _ __\n _____ _____ (_)/ /__ (_)/ /_ ____/ /___ _____ (_)____/ /___\n / ___// ___// // //_// // __/______ / __ // _ \\ / ___// // __ // _ \\\n (__ )/ /__ / // ,< / // /_ /_____// /_/ // __// /__ / // /_/ // __/\n /____/ \\___//_//_/|_|/_/ \\__/ \\__,_/ \\___/ \\___//_/ \\__,_/ \\___/\n\n<br>\n<p align=\"center\">\n <a href=\"https://github.com/airbus/scikit-decide/actions/workflows/ci.yml?query=branch%3Amaster\">\n <img src=\"https://img.shields.io/github/actions/workflow/status/airbus/scikit-decide/ci.yml?branch=master&logo=github&label=CI%20status\" alt=\"actions status\">\n </a>\n <a href=\"https://github.com/airbus/scikit-decide/tags\">\n <img src=\"https://img.shields.io/github/tag/airbus/scikit-decide.svg?label=current%20version\" alt=\"version\">\n </a>\n <a href=\"https://github.com/airbus/scikit-decide/stargazers\">\n <img src=\"https://img.shields.io/github/stars/airbus/scikit-decide.svg\" alt=\"stars\">\n </a>\n <a href=\"https://github.com/airbus/scikit-decide/network\">\n <img src=\"https://img.shields.io/github/forks/airbus/scikit-decide.svg\" alt=\"forks\">\n </a>\n</p>\n<br>\n\n# Scikit-decide for Python\n\nScikit-decide is an AI framework for Reinforcement Learning, Automated Planning and Scheduling.\n\nThis framework was initiated at [Airbus](https://www.airbus.com) AI Research and notably received contributions through the [ANITI](https://aniti.univ-toulouse.fr/en/) and [TUPLES](https://tuples.ai/) projects, and also from [ANU](https://www.anu.edu.au/).\n\n## Main features\n\n<!--features-list-start-->\n\n- **Problem solving:** describe your decision-making problem once and auto-match compatible solvers.\\\n _For instance planning/scheduling problems can be solved by RL solvers using GNNs._\n- **Growing catalog:** enjoy a growing list of domains & solvers catalog, supported by the community.\n- **Open & Extensible:** scikit-decide is open source and is able to wrap existing state-of-the-art domains/solvers.\n- **Domains available:**\n - [Gym(nasium)](https://gymnasium.farama.org/) environments for reinforcement learning (RL)\n - [PDDL](https://planning.wiki/) (Planning Domain Definition Language) via [unified-planning](https://github.com/aiplan4eu/unified-planning) and [plado](https://github.com/massle/plado) libraries\n - encoding in gym(nasium) spaces compatible with RL\n - graph representations for RL (inspired by [Lifted Learning Graph](https://doi.org/10.1609/aaai.v38i18.29986)) :new:\n - [RDDL](https://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf) (Relational Dynamic Influence Diagram Language) using [pyrddl-gym](https://github.com/pyrddlgym-project) library.\n - Flight planning, based on [openap](https://openap.dev/) or in-house Poll-Schumann for performance model\n - Scheduling, based on rcpsp problem from [discrete-optimization](https://airbus.github.io/discrete-optimization) library\n - Toy domains like: maze, mastermind, rock-paper-scissors\n- **Solvers available:**\n - RL solvers from ray.rllib and stable-baselines3\n - existing algos with action masking\n - adaptation of RL algos for graph observation, based on GNNs from [pytorch-geometric](https://pytorch-geometric.readthedocs.io/) :new:\n - autoregressive models with action masking component by component for parametric actions :new:\n - Planning solvers from [unified-planning](https://github.com/aiplan4eu/unified-planning) library\n - RDDL solvers jax and gurobi-based based on pyRDDLGym-jax and pyRDDLGym-gurobi from [pyrddl-gym project](https://github.com/pyrddlgym-project)\n - Search solvers coded in scikit-decide library:\n - A*\n - AO*\n - Improved-LAO*\n - Learning Real-Time A*\n - Best First Width Search\n - Labeled RTDP\n - Multi-Agent RTDP\n - Iterated Width search (IW)\n - Rollout IW (RIW)\n - Partially-Observable Monte Carlo Planning (POMCP)\n - Monte Carlo Tree Search Methods (MCTS)\n - Multi-Agent Heuristic meta-solver (MAHD)\n - Evolution strategy: Cartesian Genetic Programming (CGP)\n - Scheduling solvers from [discrete-optimization](https://airbus.github.io/discrete-optimization),\n - itself wrapping [ortools](https://developers.google.com/optimization), [gurobi](https://www.gurobi.com/),\n [toulbar](https://toulbar2.github.io/toulbar2/#), [minizinc](https://www.minizinc.org/),\n [deap](https://deap.readthedocs.io/) (genetic algorithm), [didppy](https://didppy.readthedocs.io/) (dynamic programming),\n - and coding local search (hill climber, simulated annealing), Large Neighborhood Search (LNS), and\n genetic programming based hyper-heuristic (GPHH)\n- **Tuning solvers hyperparameters**\n - hyperparameters definition\n - automated study with optuna\n\n<!--features-list-end-->\n\n## Installation\n\nQuick version:\n```shell\npip install scikit-decide[all]\n```\nFor more details, see the [online documentation](https://airbus.github.io/scikit-decide/install).\n\n## Documentation\n\nThe latest documentation is available [online](https://airbus.github.io/scikit-decide).\n\n## Examples\n\nSome educational notebooks are available in `notebooks/` folder.\nLinks to launch them online with [binder](https://mybinder.org/) are provided in the\n[Notebooks section](https://airbus.github.io/scikit-decide/notebooks) of the online documentation.\n\nMore examples can be found as Python scripts in the `examples/` folder, showing how to import or define a domain,\nand how to run or solve it. Most of the examples rely on scikit-decide Hub, an extensible catalog of domains/solvers.\n\n## Contributing\n\nSee more about how to contribute in the [online documentation](https://airbus.github.io/scikit-decide/contribute).\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "The AI framework for Reinforcement Learning, Automated Planning and Scheduling",
"version": "1.0.3",
"project_urls": {
"Homepage": "https://airbus.github.io/scikit-decide/",
"Repository": "https://github.com/airbus/scikit-decide"
},
"split_keywords": [
"reinforcement learning",
" planning",
" scheduling"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b0a1d56736ec0a53b50f6212497d193a9bf10612af968920c50c439235d6a2be",
"md5": "13ac88efa7125ea272965f199e1ea69a",
"sha256": "cbe64636e5ece534b3e25d6ffac4a20bb7f61ea8f9b28a73bfd077d5a9be5835"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp310-cp310-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "13ac88efa7125ea272965f199e1ea69a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4.0,>=3.9",
"size": 4918780,
"upload_time": "2025-07-21T13:27:49",
"upload_time_iso_8601": "2025-07-21T13:27:49.157710Z",
"url": "https://files.pythonhosted.org/packages/b0/a1/d56736ec0a53b50f6212497d193a9bf10612af968920c50c439235d6a2be/scikit_decide-1.0.3-cp310-cp310-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "69de525308a57ac7d0afa61ad20af54e4309f7214294f1dea06f404f806af318",
"md5": "d47862921cb90824ca2035a61191077f",
"sha256": "3f5afe20b350a9b559842128c6b4ff772f9c1474ec943ced16dff97535b46a5f"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp310-cp310-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "d47862921cb90824ca2035a61191077f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4.0,>=3.9",
"size": 4316146,
"upload_time": "2025-07-21T13:27:51",
"upload_time_iso_8601": "2025-07-21T13:27:51.312820Z",
"url": "https://files.pythonhosted.org/packages/69/de/525308a57ac7d0afa61ad20af54e4309f7214294f1dea06f404f806af318/scikit_decide-1.0.3-cp310-cp310-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f3568c270f1a10dc837c1d03eff1be6eef207332750241772accf68ced25b3e0",
"md5": "6469de6a5060e3d6753f29a3ca81ba44",
"sha256": "7338a38f4919c685d8f952412f6c228342656953c409cb31e918604c6aeff602"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "6469de6a5060e3d6753f29a3ca81ba44",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4.0,>=3.9",
"size": 5846117,
"upload_time": "2025-07-21T13:27:52",
"upload_time_iso_8601": "2025-07-21T13:27:52.858966Z",
"url": "https://files.pythonhosted.org/packages/f3/56/8c270f1a10dc837c1d03eff1be6eef207332750241772accf68ced25b3e0/scikit_decide-1.0.3-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bedf8a529741d56269005a50795cd008034e3962e400e97c3a7656c5333ce304",
"md5": "3ee1a8de52ba6fedb4aace987e331a0a",
"sha256": "814bddd6acead1196ff0cc3a9793bd5c61ff150f44670b539cc94fc78fc7a42d"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "3ee1a8de52ba6fedb4aace987e331a0a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": "<4.0,>=3.9",
"size": 2579585,
"upload_time": "2025-07-21T13:27:54",
"upload_time_iso_8601": "2025-07-21T13:27:54.209348Z",
"url": "https://files.pythonhosted.org/packages/be/df/8a529741d56269005a50795cd008034e3962e400e97c3a7656c5333ce304/scikit_decide-1.0.3-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bf08d90952ef45f235fa602876b13ffaf639091ddfff7f42da761cf90444190b",
"md5": "7d750eea666a71992bd2634d99cf1584",
"sha256": "8a3abe9f745a1da70c735909f51dbe44954653fcb498726478bee995707aa255"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp311-cp311-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "7d750eea666a71992bd2634d99cf1584",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4.0,>=3.9",
"size": 4920423,
"upload_time": "2025-07-21T13:27:55",
"upload_time_iso_8601": "2025-07-21T13:27:55.851701Z",
"url": "https://files.pythonhosted.org/packages/bf/08/d90952ef45f235fa602876b13ffaf639091ddfff7f42da761cf90444190b/scikit_decide-1.0.3-cp311-cp311-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "282884da70e28577467bd95cc87e6a2253f306c56290c16501ffb1f714044f40",
"md5": "6223d2b696398b8730b3372e9b422981",
"sha256": "15fd5f560893e2cf3deee7e5919035dba4dfefafe50853a816e3d63411ce8bd9"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp311-cp311-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "6223d2b696398b8730b3372e9b422981",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4.0,>=3.9",
"size": 4317635,
"upload_time": "2025-07-21T13:27:57",
"upload_time_iso_8601": "2025-07-21T13:27:57.658621Z",
"url": "https://files.pythonhosted.org/packages/28/28/84da70e28577467bd95cc87e6a2253f306c56290c16501ffb1f714044f40/scikit_decide-1.0.3-cp311-cp311-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "eef33e7794cd1cbf60e75f1c5d4584313486b25ca2b4dcee6ee475cf4c7b9c89",
"md5": "b8c792e7ef0b3516db98fe882ce798a0",
"sha256": "6a94e50a27ffc3fc4734174fbca131163c7be1a50a3fd693866919c19a089c89"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "b8c792e7ef0b3516db98fe882ce798a0",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4.0,>=3.9",
"size": 5852118,
"upload_time": "2025-07-21T13:27:59",
"upload_time_iso_8601": "2025-07-21T13:27:59.059704Z",
"url": "https://files.pythonhosted.org/packages/ee/f3/3e7794cd1cbf60e75f1c5d4584313486b25ca2b4dcee6ee475cf4c7b9c89/scikit_decide-1.0.3-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d13735ba9f76d98ef13fd5f5241bbac74dbfd4537be0408ead71c02b427352ea",
"md5": "6910d7f896a4988eb061038380c53227",
"sha256": "22536c51494a14488606bc44d568f232acc3db6bd1dc447414aa5b8caafd983f"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "6910d7f896a4988eb061038380c53227",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": "<4.0,>=3.9",
"size": 2580936,
"upload_time": "2025-07-21T13:28:00",
"upload_time_iso_8601": "2025-07-21T13:28:00.444390Z",
"url": "https://files.pythonhosted.org/packages/d1/37/35ba9f76d98ef13fd5f5241bbac74dbfd4537be0408ead71c02b427352ea/scikit_decide-1.0.3-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bf1ccb0c635e98de085c52a303c302f003729333d36f05de49fbc36d0965afb1",
"md5": "ac940742c40dc7918631f36fe6500fe9",
"sha256": "2ac1a63aadb7edd11300cd15a93536e81dcf5516b5aa051365570056e8875a5e"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp312-cp312-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "ac940742c40dc7918631f36fe6500fe9",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4.0,>=3.9",
"size": 4929266,
"upload_time": "2025-07-21T13:28:04",
"upload_time_iso_8601": "2025-07-21T13:28:04.255544Z",
"url": "https://files.pythonhosted.org/packages/bf/1c/cb0c635e98de085c52a303c302f003729333d36f05de49fbc36d0965afb1/scikit_decide-1.0.3-cp312-cp312-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9120ddf4726dd881f9f1ea27974847625ad549147ce26b6cb69ad6b7ff99d000",
"md5": "a666359a50ca8f67705014c068084da9",
"sha256": "a0f668e2a1b035edf403947979d3587e24a2d41c9e6310c106e01d87dfe6e6b8"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp312-cp312-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "a666359a50ca8f67705014c068084da9",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4.0,>=3.9",
"size": 4321410,
"upload_time": "2025-07-21T13:28:06",
"upload_time_iso_8601": "2025-07-21T13:28:06.094344Z",
"url": "https://files.pythonhosted.org/packages/91/20/ddf4726dd881f9f1ea27974847625ad549147ce26b6cb69ad6b7ff99d000/scikit_decide-1.0.3-cp312-cp312-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6e69ffbe8af30dcab503cc520702f92177658b29c365577a0632116612d3351c",
"md5": "dce177c1e68bf397a7011c0f1d080509",
"sha256": "8c68865bd408dae925c205619e5a5a30b5052b74f63e74f41d9bc5eae442ce2f"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "dce177c1e68bf397a7011c0f1d080509",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4.0,>=3.9",
"size": 5839943,
"upload_time": "2025-07-21T13:28:07",
"upload_time_iso_8601": "2025-07-21T13:28:07.503814Z",
"url": "https://files.pythonhosted.org/packages/6e/69/ffbe8af30dcab503cc520702f92177658b29c365577a0632116612d3351c/scikit_decide-1.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "47cbfba02e4634b76e73d45e0d12ba1843407c9949fa86e2e2ba7cbf614b6831",
"md5": "b4401cd87a05daf4baeb3e663991dd41",
"sha256": "c7b2a85cb4abad21cfed1b9bb0ed6403519c2d36c08bc9d74d58ec6c52f1465d"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "b4401cd87a05daf4baeb3e663991dd41",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": "<4.0,>=3.9",
"size": 2575260,
"upload_time": "2025-07-21T13:28:08",
"upload_time_iso_8601": "2025-07-21T13:28:08.835847Z",
"url": "https://files.pythonhosted.org/packages/47/cb/fba02e4634b76e73d45e0d12ba1843407c9949fa86e2e2ba7cbf614b6831/scikit_decide-1.0.3-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "ee882ab4878ebeab11b2d85d5a882416cfeaf9969af7390208a4f52be4859912",
"md5": "7dc699142b1160eb88b493762624f55f",
"sha256": "ed33e19c8902bbc6066717dbb790a674fa86f94c038003973d0e2f96003f7600"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp39-cp39-macosx_10_15_x86_64.whl",
"has_sig": false,
"md5_digest": "7dc699142b1160eb88b493762624f55f",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4.0,>=3.9",
"size": 4918711,
"upload_time": "2025-07-21T13:28:10",
"upload_time_iso_8601": "2025-07-21T13:28:10.716993Z",
"url": "https://files.pythonhosted.org/packages/ee/88/2ab4878ebeab11b2d85d5a882416cfeaf9969af7390208a4f52be4859912/scikit_decide-1.0.3-cp39-cp39-macosx_10_15_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "33153bc8ebac4ea1b260743f0565e9295206e9b3d6598a688c97e39bdb015d53",
"md5": "49db7b8ae54e2cc126458f4339c158af",
"sha256": "a687be4d20184172c6f0b8ed3d3da77c74ae7c4a674314cda79a3500cb5f12e3"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp39-cp39-macosx_12_0_arm64.whl",
"has_sig": false,
"md5_digest": "49db7b8ae54e2cc126458f4339c158af",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4.0,>=3.9",
"size": 4316321,
"upload_time": "2025-07-21T13:28:12",
"upload_time_iso_8601": "2025-07-21T13:28:12.092089Z",
"url": "https://files.pythonhosted.org/packages/33/15/3bc8ebac4ea1b260743f0565e9295206e9b3d6598a688c97e39bdb015d53/scikit_decide-1.0.3-cp39-cp39-macosx_12_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "18a5388ee103fce326b2ae8f23948d8573868c837667d4264b56d856b8d883a1",
"md5": "79661a0a82e2b96e960b23108e7a6c96",
"sha256": "c2ee70bc33422e86427c38b95693c6a5b0257527a06402b5c9f9fff1cf8dca07"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "79661a0a82e2b96e960b23108e7a6c96",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4.0,>=3.9",
"size": 5844772,
"upload_time": "2025-07-21T13:28:14",
"upload_time_iso_8601": "2025-07-21T13:28:14.651848Z",
"url": "https://files.pythonhosted.org/packages/18/a5/388ee103fce326b2ae8f23948d8573868c837667d4264b56d856b8d883a1/scikit_decide-1.0.3-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "fc3e111b0bf653173df23a7bed09db4aec62554cfdfbf77fd8d5b64aa09094e0",
"md5": "0d0ca0f4a0af960c5c762c306e54dc86",
"sha256": "680726b37df972c40b8ad2809c4d4d100d8204d864b5976a446a0869b800736a"
},
"downloads": -1,
"filename": "scikit_decide-1.0.3-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "0d0ca0f4a0af960c5c762c306e54dc86",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": "<4.0,>=3.9",
"size": 2597025,
"upload_time": "2025-07-21T13:28:16",
"upload_time_iso_8601": "2025-07-21T13:28:16.115913Z",
"url": "https://files.pythonhosted.org/packages/fc/3e/111b0bf653173df23a7bed09db4aec62554cfdfbf77fd8d5b64aa09094e0/scikit_decide-1.0.3-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-21 13:27:49",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "airbus",
"github_project": "scikit-decide",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "scikit-decide"
}