scikit-ferm


Namescikit-ferm JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA scikit-learn compatible package for fermentations.
upload_time2025-08-12 13:30:29
maintainerNone
docs_urlNone
authorNone
requires_python>=3.12
licenseNone
keywords acidification fermentation python scikit-ferm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![sphinx](https://github.com/aschwins/scikit-ferm/actions/workflows/sphinx.yml/badge.svg?branch=main)
![tests](https://github.com/aschwins/scikit-ferm/actions/workflows/pytest.yml/badge.svg?branch=main)
![type_checks](https://github.com/aschwins/scikit-ferm/actions/workflows/pyright.yml/badge.svg?branch=main)
![release](https://github.com/aschwins/scikit-ferm/actions/workflows/release.yml/badge.svg?branch=main)


![](https://img.shields.io/pypi/pyversions/scikit-ferm)
[![Version](https://img.shields.io/pypi/v/scikit-ferm)](https://pypi.org/project/scikit-ferm/)

# scikit-ferm

**scikit-ferm** is a Python package designed to generate synthetic fermentation datasets and model microbial growth dynamics. Whether you're studying food fermentation (like yogurt production) or simulating microbial behavior for research and development, scikit-ferm provides flexible tools to create realistic datasets based on established growth models.

<a href="https://aschwins.github.io/scikit-lego/"><img src="images/logo.png" width="60%" height="60%" align="center" /></a>


The official documentation is hosted [here](https://aschwins.github.io/scikit-ferm/).

## Installation

Install scikit-ferm via pip with:

```bash
uv pip install scikit-ferm
```

Alternatively, to edit and contribute you can fork/clone and run:

```bash
git clone https://github.com/Aschwins/scikit-ferm.git
uv sync
```

## Use cases

| Use Case | Modules | Notebook | Documentation |
|----------|---------|----------|---------------|
| Generate synthetic fermentation datasets | •[`skferm.datasets.generate_synthetic_growth`](skferm/datasets.py)<br> •[`skferm.datasets.rheolaser`](skferm/datasets/rheolaser.py) | [📓 Notebook](notebooks/01-curve-smoothing.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#datasets) |
| Growth modeling | • [`skferm.growth_models.gompertz`](skferm/growth_models/gompertz.py)<br>• [`skferm.growth_models.logistic`](skferm/growth_models/logistic.py) | [📓 Notebook](notebooks/02-gompertz-model.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#growth_models) |
| Curve smoothing | • [`skferm.curve_smoothing.smooth`](skferm/curve_smoothing/smooth.py) | [📓 Notebook](notebooks/03-curve-smoothing.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#curve_smoothing) |


http://172.18.195.64:8000/

## Examples

Jupyter notebooks are used to demonstrate examples. You can find the notebooks in the `notebooks` directory. Each example describes a use case. To run the examples you need to install scikit-ferm with an additional dependencies and start Jupyter Lab.

```bash
uv sync
jupyter lab
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scikit-ferm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": "acidification, fermentation, python, scikit-ferm",
    "author": null,
    "author_email": "Aschwin Schilperoort <author@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/64/d2/8944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f/scikit_ferm-0.1.1.tar.gz",
    "platform": null,
    "description": "![sphinx](https://github.com/aschwins/scikit-ferm/actions/workflows/sphinx.yml/badge.svg?branch=main)\n![tests](https://github.com/aschwins/scikit-ferm/actions/workflows/pytest.yml/badge.svg?branch=main)\n![type_checks](https://github.com/aschwins/scikit-ferm/actions/workflows/pyright.yml/badge.svg?branch=main)\n![release](https://github.com/aschwins/scikit-ferm/actions/workflows/release.yml/badge.svg?branch=main)\n\n\n![](https://img.shields.io/pypi/pyversions/scikit-ferm)\n[![Version](https://img.shields.io/pypi/v/scikit-ferm)](https://pypi.org/project/scikit-ferm/)\n\n# scikit-ferm\n\n**scikit-ferm** is a Python package designed to generate synthetic fermentation datasets and model microbial growth dynamics. Whether you're studying food fermentation (like yogurt production) or simulating microbial behavior for research and development, scikit-ferm provides flexible tools to create realistic datasets based on established growth models.\n\n<a href=\"https://aschwins.github.io/scikit-lego/\"><img src=\"images/logo.png\" width=\"60%\" height=\"60%\" align=\"center\" /></a>\n\n\nThe official documentation is hosted [here](https://aschwins.github.io/scikit-ferm/).\n\n## Installation\n\nInstall scikit-ferm via pip with:\n\n```bash\nuv pip install scikit-ferm\n```\n\nAlternatively, to edit and contribute you can fork/clone and run:\n\n```bash\ngit clone https://github.com/Aschwins/scikit-ferm.git\nuv sync\n```\n\n## Use cases\n\n| Use Case | Modules | Notebook | Documentation |\n|----------|---------|----------|---------------|\n| Generate synthetic fermentation datasets | \u2022[`skferm.datasets.generate_synthetic_growth`](skferm/datasets.py)<br> \u2022[`skferm.datasets.rheolaser`](skferm/datasets/rheolaser.py) | [\ud83d\udcd3 Notebook](notebooks/01-curve-smoothing.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#datasets) |\n| Growth modeling | \u2022 [`skferm.growth_models.gompertz`](skferm/growth_models/gompertz.py)<br>\u2022 [`skferm.growth_models.logistic`](skferm/growth_models/logistic.py) | [\ud83d\udcd3 Notebook](notebooks/02-gompertz-model.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#growth_models) |\n| Curve smoothing | \u2022 [`skferm.curve_smoothing.smooth`](skferm/curve_smoothing/smooth.py) | [\ud83d\udcd3 Notebook](notebooks/03-curve-smoothing.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#curve_smoothing) |\n\n\nhttp://172.18.195.64:8000/\n\n## Examples\n\nJupyter notebooks are used to demonstrate examples. You can find the notebooks in the `notebooks` directory. Each example describes a use case. To run the examples you need to install scikit-ferm with an additional dependencies and start Jupyter Lab.\n\n```bash\nuv sync\njupyter lab\n```\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A scikit-learn compatible package for fermentations.",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://aschwins.github.io/scikit-ferm/",
        "Issues": "https://github.com/Aschwins/scikit-ferm/issues"
    },
    "split_keywords": [
        "acidification",
        " fermentation",
        " python",
        " scikit-ferm"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f9668c537333bee6909298f9477f15ec3344f0bba69095f5c599a5f628a767e3",
                "md5": "728947969466d17dc3c4f19fd8381ef0",
                "sha256": "ef6e95a2192678c9d3e2ad83fbcaca3c79e4e6f6984dacbcd4921e31493c6e28"
            },
            "downloads": -1,
            "filename": "scikit_ferm-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "728947969466d17dc3c4f19fd8381ef0",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 22713,
            "upload_time": "2025-08-12T13:30:28",
            "upload_time_iso_8601": "2025-08-12T13:30:28.564399Z",
            "url": "https://files.pythonhosted.org/packages/f9/66/8c537333bee6909298f9477f15ec3344f0bba69095f5c599a5f628a767e3/scikit_ferm-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "64d28944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f",
                "md5": "08b7792fc2c69edb7620d9108bdd5e42",
                "sha256": "d289e6cc8c56161fa15e0dd97679c384e6e67cb2b33a5680305d0237192fef7b"
            },
            "downloads": -1,
            "filename": "scikit_ferm-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "08b7792fc2c69edb7620d9108bdd5e42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 20314,
            "upload_time": "2025-08-12T13:30:29",
            "upload_time_iso_8601": "2025-08-12T13:30:29.378831Z",
            "url": "https://files.pythonhosted.org/packages/64/d2/8944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f/scikit_ferm-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-12 13:30:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Aschwins",
    "github_project": "scikit-ferm",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "scikit-ferm"
}
        
Elapsed time: 0.85989s