




[](https://pypi.org/project/scikit-ferm/)
# scikit-ferm
**scikit-ferm** is a Python package designed to generate synthetic fermentation datasets and model microbial growth dynamics. Whether you're studying food fermentation (like yogurt production) or simulating microbial behavior for research and development, scikit-ferm provides flexible tools to create realistic datasets based on established growth models.
<a href="https://aschwins.github.io/scikit-lego/"><img src="images/logo.png" width="60%" height="60%" align="center" /></a>
The official documentation is hosted [here](https://aschwins.github.io/scikit-ferm/).
## Installation
Install scikit-ferm via pip with:
```bash
uv pip install scikit-ferm
```
Alternatively, to edit and contribute you can fork/clone and run:
```bash
git clone https://github.com/Aschwins/scikit-ferm.git
uv sync
```
## Use cases
| Use Case | Modules | Notebook | Documentation |
|----------|---------|----------|---------------|
| Generate synthetic fermentation datasets | •[`skferm.datasets.generate_synthetic_growth`](skferm/datasets.py)<br> •[`skferm.datasets.rheolaser`](skferm/datasets/rheolaser.py) | [📓 Notebook](notebooks/01-curve-smoothing.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#datasets) |
| Growth modeling | • [`skferm.growth_models.gompertz`](skferm/growth_models/gompertz.py)<br>• [`skferm.growth_models.logistic`](skferm/growth_models/logistic.py) | [📓 Notebook](notebooks/02-gompertz-model.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#growth_models) |
| Curve smoothing | • [`skferm.curve_smoothing.smooth`](skferm/curve_smoothing/smooth.py) | [📓 Notebook](notebooks/03-curve-smoothing.ipynb) | [📚 Docs](https://aschwins.github.io/scikit-ferm/usage.html#curve_smoothing) |
http://172.18.195.64:8000/
## Examples
Jupyter notebooks are used to demonstrate examples. You can find the notebooks in the `notebooks` directory. Each example describes a use case. To run the examples you need to install scikit-ferm with an additional dependencies and start Jupyter Lab.
```bash
uv sync
jupyter lab
```
Raw data
{
"_id": null,
"home_page": null,
"name": "scikit-ferm",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": null,
"keywords": "acidification, fermentation, python, scikit-ferm",
"author": null,
"author_email": "Aschwin Schilperoort <author@example.com>",
"download_url": "https://files.pythonhosted.org/packages/64/d2/8944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f/scikit_ferm-0.1.1.tar.gz",
"platform": null,
"description": "\n\n\n\n\n\n\n[](https://pypi.org/project/scikit-ferm/)\n\n# scikit-ferm\n\n**scikit-ferm** is a Python package designed to generate synthetic fermentation datasets and model microbial growth dynamics. Whether you're studying food fermentation (like yogurt production) or simulating microbial behavior for research and development, scikit-ferm provides flexible tools to create realistic datasets based on established growth models.\n\n<a href=\"https://aschwins.github.io/scikit-lego/\"><img src=\"images/logo.png\" width=\"60%\" height=\"60%\" align=\"center\" /></a>\n\n\nThe official documentation is hosted [here](https://aschwins.github.io/scikit-ferm/).\n\n## Installation\n\nInstall scikit-ferm via pip with:\n\n```bash\nuv pip install scikit-ferm\n```\n\nAlternatively, to edit and contribute you can fork/clone and run:\n\n```bash\ngit clone https://github.com/Aschwins/scikit-ferm.git\nuv sync\n```\n\n## Use cases\n\n| Use Case | Modules | Notebook | Documentation |\n|----------|---------|----------|---------------|\n| Generate synthetic fermentation datasets | \u2022[`skferm.datasets.generate_synthetic_growth`](skferm/datasets.py)<br> \u2022[`skferm.datasets.rheolaser`](skferm/datasets/rheolaser.py) | [\ud83d\udcd3 Notebook](notebooks/01-curve-smoothing.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#datasets) |\n| Growth modeling | \u2022 [`skferm.growth_models.gompertz`](skferm/growth_models/gompertz.py)<br>\u2022 [`skferm.growth_models.logistic`](skferm/growth_models/logistic.py) | [\ud83d\udcd3 Notebook](notebooks/02-gompertz-model.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#growth_models) |\n| Curve smoothing | \u2022 [`skferm.curve_smoothing.smooth`](skferm/curve_smoothing/smooth.py) | [\ud83d\udcd3 Notebook](notebooks/03-curve-smoothing.ipynb) | [\ud83d\udcda Docs](https://aschwins.github.io/scikit-ferm/usage.html#curve_smoothing) |\n\n\nhttp://172.18.195.64:8000/\n\n## Examples\n\nJupyter notebooks are used to demonstrate examples. You can find the notebooks in the `notebooks` directory. Each example describes a use case. To run the examples you need to install scikit-ferm with an additional dependencies and start Jupyter Lab.\n\n```bash\nuv sync\njupyter lab\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "A scikit-learn compatible package for fermentations.",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://aschwins.github.io/scikit-ferm/",
"Issues": "https://github.com/Aschwins/scikit-ferm/issues"
},
"split_keywords": [
"acidification",
" fermentation",
" python",
" scikit-ferm"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "f9668c537333bee6909298f9477f15ec3344f0bba69095f5c599a5f628a767e3",
"md5": "728947969466d17dc3c4f19fd8381ef0",
"sha256": "ef6e95a2192678c9d3e2ad83fbcaca3c79e4e6f6984dacbcd4921e31493c6e28"
},
"downloads": -1,
"filename": "scikit_ferm-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "728947969466d17dc3c4f19fd8381ef0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 22713,
"upload_time": "2025-08-12T13:30:28",
"upload_time_iso_8601": "2025-08-12T13:30:28.564399Z",
"url": "https://files.pythonhosted.org/packages/f9/66/8c537333bee6909298f9477f15ec3344f0bba69095f5c599a5f628a767e3/scikit_ferm-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "64d28944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f",
"md5": "08b7792fc2c69edb7620d9108bdd5e42",
"sha256": "d289e6cc8c56161fa15e0dd97679c384e6e67cb2b33a5680305d0237192fef7b"
},
"downloads": -1,
"filename": "scikit_ferm-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "08b7792fc2c69edb7620d9108bdd5e42",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 20314,
"upload_time": "2025-08-12T13:30:29",
"upload_time_iso_8601": "2025-08-12T13:30:29.378831Z",
"url": "https://files.pythonhosted.org/packages/64/d2/8944c52f38bfaf14b8400809eac9f2f9ea6b27d10cb3485c39684335e16f/scikit_ferm-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-12 13:30:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Aschwins",
"github_project": "scikit-ferm",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "scikit-ferm"
}