<p align="center">
<img src="assets/logo.png" alt="Alt text"/>
</p>
# Scikit-JAX: Classical Machine Learning on the GPU
Welcome to **Scikit-JAX**, a machine learning library designed to leverage the power of GPUs through JAX for efficient and scalable classical machine learning algorithms. Our library provides implementations for a variety of classical machine learning techniques, optimized for performance and ease of use.
## Features
- **Linear Regression**: Implemented with options for different weight initialization methods and dropout regularization.
- **KMeans**: Clustering algorithm to group data points into clusters.
- **Principal Component Analysis (PCA)**: Dimensionality reduction technique to simplify data while preserving essential features.
- **Multinomial Naive Bayes**: Classifier suitable for discrete data, such as text classification tasks.
- **Gaussian Naive Bayes**: Classifier for continuous data with a normal distribution assumption.
## Installation
To install Scikit-JAX, you can use pip. The package is available on PyPI:
```python
pip install scikit-jax
```
## Usage
Here is a quick guide on how to use the key components of Scikit-JAX.
### Linear Regression
```py
from skjax.linear_model import LinearRegression
# Initialize the model
model = LinearRegression(weights_init='xavier', epochs=100, learning_rate=0.01)
# Fit the model
model.fit(X_train, y_train)
# Make predictions
predictions = model.predict(X_test)
# Plot losses
model.plot_losses()
```
### K-Means
```python
from skjax.clustering import KMeans
# Initialize the model
kmeans = KMeans(num_clusters=3)
# Fit the model
kmeans.fit(X_train)
```
### Gaussian Naive Bayes
```python
from skjax.naive_bayes import GaussianNaiveBayes
# Initialize the model
nb = GaussianNaiveBayes()
# Fit the model
nb.fit(X_train, y_train)
# Make predictions
predictions = nb.predict(X_test)
```
### License
Scikit-JAX is licensed under the [MIT License](LICENSE.txt).
Raw data
{
"_id": null,
"home_page": "https://github.com/LiibanMo/scikit-jax",
"name": "scikit-jax",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "jax classical machine learning",
"author": "Liiban Mohamud",
"author_email": "liibanmohamud12@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/90/5e/58e5b2a5622f46cfc102dcdf994570d1a47d952a4c46a2966bbe7cdf413e/scikit_jax-0.0.2.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n <img src=\"assets/logo.png\" alt=\"Alt text\"/>\n</p>\n\n# Scikit-JAX: Classical Machine Learning on the GPU\n\nWelcome to **Scikit-JAX**, a machine learning library designed to leverage the power of GPUs through JAX for efficient and scalable classical machine learning algorithms. Our library provides implementations for a variety of classical machine learning techniques, optimized for performance and ease of use.\n\n## Features\n\n- **Linear Regression**: Implemented with options for different weight initialization methods and dropout regularization.\n- **KMeans**: Clustering algorithm to group data points into clusters.\n- **Principal Component Analysis (PCA)**: Dimensionality reduction technique to simplify data while preserving essential features.\n- **Multinomial Naive Bayes**: Classifier suitable for discrete data, such as text classification tasks.\n- **Gaussian Naive Bayes**: Classifier for continuous data with a normal distribution assumption.\n\n## Installation\n\nTo install Scikit-JAX, you can use pip. The package is available on PyPI:\n\n```python\npip install scikit-jax\n```\n\n## Usage\n\nHere is a quick guide on how to use the key components of Scikit-JAX.\n\n### Linear Regression\n```py\nfrom skjax.linear_model import LinearRegression\n\n# Initialize the model\nmodel = LinearRegression(weights_init='xavier', epochs=100, learning_rate=0.01)\n\n# Fit the model\nmodel.fit(X_train, y_train)\n\n# Make predictions\npredictions = model.predict(X_test)\n\n# Plot losses\nmodel.plot_losses()\n```\n\n### K-Means\n```python\nfrom skjax.clustering import KMeans\n\n# Initialize the model\nkmeans = KMeans(num_clusters=3)\n\n# Fit the model\nkmeans.fit(X_train)\n```\n\n### Gaussian Naive Bayes\n```python\nfrom skjax.naive_bayes import GaussianNaiveBayes\n\n# Initialize the model\nnb = GaussianNaiveBayes()\n\n# Fit the model\nnb.fit(X_train, y_train)\n\n# Make predictions\npredictions = nb.predict(X_test)\n```\n\n### License\n\nScikit-JAX is licensed under the [MIT License](LICENSE.txt).\n",
"bugtrack_url": null,
"license": null,
"summary": "Classical machine learning algorithms on the GPU/TPU.",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/LiibanMo/scikit-jax"
},
"split_keywords": [
"jax",
"classical",
"machine",
"learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c66498e0f28a2fb083e3efbd4b124bfe80cb15ce90761d30dd1ac5e9d291d9a1",
"md5": "2ade95056621c4ed4fac75b8137bec84",
"sha256": "b136f34db60826b544007d0423e9c47c17bd6272523cdbd3e9783d63a206169f"
},
"downloads": -1,
"filename": "scikit_jax-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2ade95056621c4ed4fac75b8137bec84",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 19505,
"upload_time": "2024-09-15T16:44:38",
"upload_time_iso_8601": "2024-09-15T16:44:38.250021Z",
"url": "https://files.pythonhosted.org/packages/c6/64/98e0f28a2fb083e3efbd4b124bfe80cb15ce90761d30dd1ac5e9d291d9a1/scikit_jax-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "905e58e5b2a5622f46cfc102dcdf994570d1a47d952a4c46a2966bbe7cdf413e",
"md5": "b6a6c9436eb01be4069c9089a361e99d",
"sha256": "333e1c6ec3680a803afb5ae0561dfa05973d265b30151429f72729ce45582d37"
},
"downloads": -1,
"filename": "scikit_jax-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "b6a6c9436eb01be4069c9089a361e99d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 13717,
"upload_time": "2024-09-15T16:44:39",
"upload_time_iso_8601": "2024-09-15T16:44:39.879863Z",
"url": "https://files.pythonhosted.org/packages/90/5e/58e5b2a5622f46cfc102dcdf994570d1a47d952a4c46a2966bbe7cdf413e/scikit_jax-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-15 16:44:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "LiibanMo",
"github_project": "scikit-jax",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "scikit-jax"
}