# Intel(R) Extension for Scikit-learn*
[![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)
[![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)
[![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)
[![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)
[![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)
With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!
The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.
⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.
You can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).
## 👀 Follow us on Medium
We publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:
- [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)
- [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)
- [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)
- [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)
- [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)
- [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
- [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)
- [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)
- [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)
- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)
## 🔗 Important links
- [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)
- [Documentation](https://intel.github.io/scikit-learn-intelex/)
- [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)
- [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)
- [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)
- [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)
- [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)
## 💬 Support
Report issues, ask questions, and provide suggestions using:
- [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)
- [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)
- [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)
You may reach out to project maintainers privately at onedal.maintainers@intel.com
# 🛠 Installation
Intel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),
on Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).
Intel(R) Extension for Scikit-learn is also available as a part of [Intel® oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html) (AI Kit).
- PyPi (recommended by default)
```bash
pip install scikit-learn-intelex
```
- Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
```bash
conda config --add channels conda-forge
conda config --set channel_priority strict
conda install scikit-learn-intelex
```
- Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
```bash
conda config --add channels intel
conda config --set channel_priority strict
conda install scikit-learn-intelex
```
<details><summary>[Click to expand] ℹ️ Supported configurations </summary>
#### 📦 PyPi channel
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
#### 📦 Anaconda Cloud: Conda-Forge channel
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
| :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |
| **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
| **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |
#### 📦 Anaconda Cloud: Intel channel
| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|
| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |
| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |
</details>
⚠️ Note: *GPU support is an optional dependency. Required dependencies for GPU support
will not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*
<details><summary>[Click to expand] ℹ️ How to install dpcpp_cpp_rt package </summary>
- PyPi
```bash
pip install --upgrade dpcpp_cpp_rt
```
- Anaconda Cloud
```bash
conda install dpcpp_cpp_rt -c intel
```
</details>
You can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.
# ⚡️ Get Started
Intel CPU optimizations patching
```py
import numpy as np
from sklearnex import patch_sklearn
patch_sklearn()
from sklearn.cluster import DBSCAN
X = np.array([[1., 2.], [2., 2.], [2., 3.],
[8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
```
Intel GPU optimizations patching
```py
import numpy as np
import dpctl
from sklearnex import patch_sklearn, config_context
patch_sklearn()
from sklearn.cluster import DBSCAN
X = np.array([[1., 2.], [2., 2.], [2., 3.],
[8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
with config_context(target_offload="gpu:0"):
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
```
# 🚀 Scikit-learn patching
![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)
Configurations:
- HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
- SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8
[Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)
<details><summary>[Click to expand] ℹ️ Reproduce results </summary>
- With Intel® Extension for Scikit-learn enabled:
```bash
python runner.py --configs configs/blogs/skl_conda_config.json -–report
```
- With the original Scikit-learn:
```bash
python runner.py --configs configs/blogs/skl_conda_config.json -–report --no-intel-optimized
```
</details>
Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).
⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.
## 📜 Intel(R) Extension for Scikit-learn verbose
To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:
- On Linux: `export SKLEARNEX_VERBOSE=INFO`
- On Windows: `set SKLEARNEX_VERBOSE=INFO`
For example, for DBSCAN you get one of these print statements depending on which implementation is used:
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`
- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`
[Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).
Raw data
{
"_id": null,
"home_page": "https://github.com/intel/scikit-learn-intelex",
"name": "scikit-learn-intelex",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "onedal.maintainers@intel.com",
"keywords": "machine learning, scikit-learn, data science, data analytics",
"author": "Intel Corporation",
"author_email": "onedal.maintainers@intel.com",
"download_url": null,
"platform": null,
"description": "\r\n# Intel(R) Extension for Scikit-learn*\r\n\r\n[![Build Status](https://dev.azure.com/daal/daal4py/_apis/build/status/CI?branchName=master)](https://dev.azure.com/daal/daal4py/_build/latest?definitionId=9&branchName=master)\r\n[![Coverity Scan Build Status](https://scan.coverity.com/projects/21716/badge.svg)](https://scan.coverity.com/projects/daal4py)\r\n[![Join the community on GitHub Discussions](https://badgen.net/badge/join%20the%20discussion/on%20github/black?icon=github)](https://github.com/intel/scikit-learn-intelex/discussions)\r\n[![PyPI Version](https://img.shields.io/pypi/v/scikit-learn-intelex)](https://pypi.org/project/scikit-learn-intelex/)\r\n[![Conda Version](https://img.shields.io/conda/vn/conda-forge/scikit-learn-intelex)](https://anaconda.org/conda-forge/scikit-learn-intelex)\r\n\r\nWith Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!\r\n\r\nThe acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library ([oneDAL](https://github.com/oneapi-src/oneDAL)). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.\r\n\r\n\u26a0\ufe0fIntel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in [**daal4py**](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py) package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py.\r\nYou can learn more about daal4py in [daal4py documentation](https://intelpython.github.io/daal4py).\r\n\r\n## \ud83d\udc40 Follow us on Medium\r\n\r\nWe publish blogs on Medium, so [follow us](https://medium.com/intel-analytics-software/tagged/machine-learning) to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:\r\n\r\n- [Save Time and Money with Intel Extension for Scikit-learn](https://medium.com/intel-analytics-software/save-time-and-money-with-intel-extension-for-scikit-learn-33627425ae4)\r\n- [Superior Machine Learning Performance on the Latest Intel Xeon Scalable Processors](https://medium.com/intel-analytics-software/superior-machine-learning-performance-on-the-latest-intel-xeon-scalable-processor-efdec279f5a3)\r\n- [Leverage Intel Optimizations in Scikit-Learn](https://medium.com/intel-analytics-software/leverage-intel-optimizations-in-scikit-learn-f562cb9d5544)\r\n- [Intel Gives Scikit-Learn the Performance Boost Data Scientists Need](https://medium.com/intel-analytics-software/intel-gives-scikit-learn-the-performance-boost-data-scientists-need-42eb47c80b18)\r\n- [From Hours to Minutes: 600x Faster SVM](https://medium.com/intel-analytics-software/from-hours-to-minutes-600x-faster-svm-647f904c31ae)\r\n- [Improve the Performance of XGBoost and LightGBM Inference](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)\r\n- [Accelerate Kaggle Challenges Using Intel AI Analytics Toolkit](https://medium.com/intel-analytics-software/accelerate-kaggle-challenges-using-intel-ai-analytics-toolkit-beb148f66d5a)\r\n- [Accelerate Your scikit-learn Applications](https://medium.com/intel-analytics-software/improving-the-performance-of-xgboost-and-lightgbm-inference-3b542c03447e)\r\n- [Accelerate Linear Models for Machine Learning](https://medium.com/intel-analytics-software/accelerating-linear-models-for-machine-learning-5a75ff50a0fe)\r\n- [Accelerate K-Means Clustering](https://medium.com/intel-analytics-software/accelerate-k-means-clustering-6385088788a1)\r\n\r\n## \ud83d\udd17 Important links\r\n- [Notebook examples](https://github.com/intel/scikit-learn-intelex/tree/master/examples/notebooks)\r\n- [Documentation](https://intel.github.io/scikit-learn-intelex/)\r\n- [scikit-learn API and patching](https://intel.github.io/scikit-learn-intelex/)\r\n- [Benchmark code](https://github.com/IntelPython/scikit-learn_bench)\r\n- [Building from Sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md)\r\n- [About Intel(R) oneAPI Data Analytics Library](https://github.com/oneapi-src/oneDAL)\r\n- [About Intel(R) daal4py](https://github.com/intel/scikit-learn-intelex/tree/master/daal4py)\r\n\r\n## \ud83d\udcac Support\r\n\r\nReport issues, ask questions, and provide suggestions using:\r\n\r\n- [GitHub Issues](https://github.com/intel/scikit-learn-intelex/issues)\r\n- [GitHub Discussions](https://github.com/intel/scikit-learn-intelex/discussions)\r\n- [Forum](https://community.intel.com/t5/Intel-Distribution-for-Python/bd-p/distribution-python)\r\n\r\nYou may reach out to project maintainers privately at onedal.maintainers@intel.com\r\n\r\n# \ud83d\udee0 Installation\r\nIntel(R) Extension for Scikit-learn is available at the [Python Package Index](https://pypi.org/project/scikit-learn-intelex/),\r\non Anaconda Cloud in [Conda-Forge channel](https://anaconda.org/conda-forge/scikit-learn-intelex) and in [Intel channel](https://anaconda.org/intel/scikit-learn-intelex).\r\nIntel(R) Extension for Scikit-learn is also available as a part of [Intel\u00ae oneAPI AI Analytics Toolkit](https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html)\u202f(AI Kit).\r\n\r\n- PyPi (recommended by default)\r\n\r\n```bash\r\npip install scikit-learn-intelex\r\n```\r\n\r\n- Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)\r\n\r\n```bash\r\n conda config --add channels conda-forge\r\n conda config --set channel_priority strict\r\n conda install scikit-learn-intelex\r\n```\r\n\r\n- Anaconda Cloud from Intel channel (recommended for Intel\u00ae Distribution for Python users)\r\n\r\n```bash\r\n conda config --add channels intel\r\n conda config --set channel_priority strict\r\n conda install scikit-learn-intelex\r\n```\r\n\r\n<details><summary>[Click to expand] \u2139\ufe0f Supported configurations </summary>\r\n\r\n#### \ud83d\udce6 PyPi channel\r\n\r\n| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|\r\n| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |\r\n| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |\r\n| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |\r\n\r\n#### \ud83d\udce6 Anaconda Cloud: Conda-Forge channel\r\n\r\n| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|\r\n| :-----------------------| :------------: | :------------: | :------------: | :------------: | :------------: |\r\n| **Linux** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |\r\n| **Windows** | [CPU] | [CPU] | [CPU] | [CPU] | [CPU] |\r\n\r\n#### \ud83d\udce6 Anaconda Cloud: Intel channel\r\n\r\n| OS / Python version | **Python 3.8** | **Python 3.9** | **Python 3.10**| **Python 3.11**| **Python 3.12**|\r\n| :-----------------------| :------------: | :-------------:| :------------: | :------------: | :------------: |\r\n| **Linux** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |\r\n| **Windows** | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] | [CPU, GPU] |\r\n\r\n</details>\r\n\r\n\u26a0\ufe0f Note: *GPU support is an optional dependency. Required dependencies for GPU support\r\nwill not be downloaded. You need to manually install ***dpcpp_cpp_rt*** package.*\r\n\r\n<details><summary>[Click to expand] \u2139\ufe0f How to install dpcpp_cpp_rt package </summary>\r\n\r\n- PyPi\r\n\r\n```bash\r\npip install --upgrade dpcpp_cpp_rt\r\n```\r\n\r\n- Anaconda Cloud\r\n\r\n```bash\r\nconda install dpcpp_cpp_rt -c intel\r\n```\r\n\r\n</details>\r\n\r\nYou can [build the package from sources](https://github.com/intel/scikit-learn-intelex/blob/master/INSTALL.md) as well.\r\n\r\n# \u26a1\ufe0f Get Started\r\n\r\nIntel CPU optimizations patching\r\n```py\r\nimport numpy as np\r\nfrom sklearnex import patch_sklearn\r\npatch_sklearn()\r\n\r\nfrom sklearn.cluster import DBSCAN\r\n\r\nX = np.array([[1., 2.], [2., 2.], [2., 3.],\r\n [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)\r\nclustering = DBSCAN(eps=3, min_samples=2).fit(X)\r\n```\r\n\r\nIntel GPU optimizations patching\r\n```py\r\nimport numpy as np\r\nimport dpctl\r\nfrom sklearnex import patch_sklearn, config_context\r\npatch_sklearn()\r\n\r\nfrom sklearn.cluster import DBSCAN\r\n\r\nX = np.array([[1., 2.], [2., 2.], [2., 3.],\r\n [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)\r\nwith config_context(target_offload=\"gpu:0\"):\r\n clustering = DBSCAN(eps=3, min_samples=2).fit(X)\r\n```\r\n\r\n# \ud83d\ude80 Scikit-learn patching\r\n\r\n![](https://raw.githubusercontent.com/intel/scikit-learn-intelex/master/doc/sources/_static/scikit-learn-acceleration-2021.2.3.PNG)\r\nConfigurations:\r\n- HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket\r\n- SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8\r\n\r\n[Benchmarks code](https://github.com/IntelPython/scikit-learn_bench)\r\n\r\n<details><summary>[Click to expand] \u2139\ufe0f Reproduce results </summary>\r\n\r\n- With Intel\u00ae Extension for Scikit-learn enabled:\r\n\r\n```bash\r\npython runner.py --configs configs/blogs/skl_conda_config.json -\u2013report\r\n```\r\n\r\n- With the original Scikit-learn:\r\n\r\n```bash\r\npython runner.py --configs configs/blogs/skl_conda_config.json -\u2013report --no-intel-optimized\r\n```\r\n</details>\r\n\r\nIntel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the [list of supported algorithms and parameters](https://intel.github.io/scikit-learn-intelex/algorithms.html) for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, [submit an issue on GitHub](https://github.com/intel/scikit-learn-intelex/issues).\r\n\r\n\u26a0\ufe0f We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.\r\n\r\n## \ud83d\udcdc Intel(R) Extension for Scikit-learn verbose\r\n\r\nTo find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:\r\n- On Linux: `export SKLEARNEX_VERBOSE=INFO`\r\n- On Windows: `set SKLEARNEX_VERBOSE=INFO`\r\n\r\nFor example, for DBSCAN you get one of these print statements depending on which implementation is used:\r\n- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU`\r\n- `SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn`\r\n\r\n[Read more in the documentation](https://intel.github.io/scikit-learn-intelex/).\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.",
"version": "2025.0.1",
"project_urls": {
"Bug Tracker": "https://github.com/intel/scikit-learn-intelex/issues",
"Documentation": "https://intel.github.io/scikit-learn-intelex/",
"Homepage": "https://github.com/intel/scikit-learn-intelex",
"Source Code": "https://github.com/intel/scikit-learn-intelex"
},
"split_keywords": [
"machine learning",
" scikit-learn",
" data science",
" data analytics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7d4b20f50cdb11a0e85f8149bebb756481eb3731d97a7c6b19fba44e24ca0688",
"md5": "b1e1d07cf7e8b936c050d7387fedb72c",
"sha256": "3ef09367cec9b85cfbaf0a95bd25a56670038a3faf53d8375c1ac81c9cbd773b"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py310-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "b1e1d07cf7e8b936c050d7387fedb72c",
"packagetype": "bdist_wheel",
"python_version": "py310",
"requires_python": ">=3.7",
"size": 4197855,
"upload_time": "2024-12-12T12:05:46",
"upload_time_iso_8601": "2024-12-12T12:05:46.319850Z",
"url": "https://files.pythonhosted.org/packages/7d/4b/20f50cdb11a0e85f8149bebb756481eb3731d97a7c6b19fba44e24ca0688/scikit_learn_intelex-2025.0.1-py310-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7f2d01875f137f8c3890fb05944f92378f544474f1a3ba894de10dddda7fb28f",
"md5": "554e3bc881ac9d7f58bb52a734072f78",
"sha256": "170cf8a1dfde076e530a23bfeaeee6f2e43e24f5a89601e8d90a83f70e27893d"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py310-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "554e3bc881ac9d7f58bb52a734072f78",
"packagetype": "bdist_wheel",
"python_version": "py310",
"requires_python": ">=3.7",
"size": 2964594,
"upload_time": "2024-12-12T12:04:02",
"upload_time_iso_8601": "2024-12-12T12:04:02.155310Z",
"url": "https://files.pythonhosted.org/packages/7f/2d/01875f137f8c3890fb05944f92378f544474f1a3ba894de10dddda7fb28f/scikit_learn_intelex-2025.0.1-py310-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0be99ad01d678b4733399b55d10760c92b93b836d4a7854513b1fe62b04d8960",
"md5": "81bdeab54919e44d94c8bca3fbedb005",
"sha256": "9b5710d434225849fe336c61555300930f61dec7d369b1bbdf9c46f6b013cb9b"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py311-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "81bdeab54919e44d94c8bca3fbedb005",
"packagetype": "bdist_wheel",
"python_version": "py311",
"requires_python": ">=3.7",
"size": 4200374,
"upload_time": "2024-12-12T12:05:23",
"upload_time_iso_8601": "2024-12-12T12:05:23.462972Z",
"url": "https://files.pythonhosted.org/packages/0b/e9/9ad01d678b4733399b55d10760c92b93b836d4a7854513b1fe62b04d8960/scikit_learn_intelex-2025.0.1-py311-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7b1b31e4c1a3c32e0edb6386900be00e31b592c3374b6319b6809380b14aa1b6",
"md5": "46bac64317c648f3d1910ee5214e3f5b",
"sha256": "682e0fa674f70b19ac5bc61c5a2791aa84bbc93991e67009077b8ec732826d0a"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py311-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "46bac64317c648f3d1910ee5214e3f5b",
"packagetype": "bdist_wheel",
"python_version": "py311",
"requires_python": ">=3.7",
"size": 2971484,
"upload_time": "2024-12-12T12:04:06",
"upload_time_iso_8601": "2024-12-12T12:04:06.056353Z",
"url": "https://files.pythonhosted.org/packages/7b/1b/31e4c1a3c32e0edb6386900be00e31b592c3374b6319b6809380b14aa1b6/scikit_learn_intelex-2025.0.1-py311-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "38445380b3c5861b0c844cc441de3bf69c02d29edb8e4ccf98f0e9cf646e9da8",
"md5": "871f0ee266bac742ea061e8470fe4a89",
"sha256": "9f855cc6225009f7d5e735855a91c3de717314b101642e3e83bad88485c81396"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py312-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "871f0ee266bac742ea061e8470fe4a89",
"packagetype": "bdist_wheel",
"python_version": "py312",
"requires_python": ">=3.7",
"size": 4198304,
"upload_time": "2024-12-12T12:05:18",
"upload_time_iso_8601": "2024-12-12T12:05:18.409594Z",
"url": "https://files.pythonhosted.org/packages/38/44/5380b3c5861b0c844cc441de3bf69c02d29edb8e4ccf98f0e9cf646e9da8/scikit_learn_intelex-2025.0.1-py312-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "931138ed0c68eb9329359df4597aaa8a7830d1c8871cd8d9ac12e0ae8c306618",
"md5": "424a65617feaec7a329ab46827ca2839",
"sha256": "28c60bd424fb3e1c68f3ec4a6d57c31f6795ee17f4249c7b4ea1293e80a40ec2"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py312-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "424a65617feaec7a329ab46827ca2839",
"packagetype": "bdist_wheel",
"python_version": "py312",
"requires_python": ">=3.7",
"size": 3078963,
"upload_time": "2024-12-12T12:03:50",
"upload_time_iso_8601": "2024-12-12T12:03:50.398109Z",
"url": "https://files.pythonhosted.org/packages/93/11/38ed0c68eb9329359df4597aaa8a7830d1c8871cd8d9ac12e0ae8c306618/scikit_learn_intelex-2025.0.1-py312-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3eb894f1a14796491c8cc5a829be17de8b6a72fca4f3e006f59efd51b3ea66bb",
"md5": "c271358e8abdbff610e17ba0a1322bfd",
"sha256": "c3753c084bed2a35458e603cf6b56f1b19ad3de3353f24515064ef4854e7d171"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py39-none-manylinux_2_28_x86_64.whl",
"has_sig": false,
"md5_digest": "c271358e8abdbff610e17ba0a1322bfd",
"packagetype": "bdist_wheel",
"python_version": "py39",
"requires_python": ">=3.7",
"size": 4198736,
"upload_time": "2024-12-12T12:05:27",
"upload_time_iso_8601": "2024-12-12T12:05:27.162101Z",
"url": "https://files.pythonhosted.org/packages/3e/b8/94f1a14796491c8cc5a829be17de8b6a72fca4f3e006f59efd51b3ea66bb/scikit_learn_intelex-2025.0.1-py39-none-manylinux_2_28_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "df52c398f5fba8f4313d47b81428548366b6da662690dda06485847c334ec959",
"md5": "7a25e3ec128f82aea6bea9ff6310ec5a",
"sha256": "2fd583d4cc0cc7ca1c164f56f25c7af0dc5756f78b1d7f5997e94f2f4c19581f"
},
"downloads": -1,
"filename": "scikit_learn_intelex-2025.0.1-py39-none-win_amd64.whl",
"has_sig": false,
"md5_digest": "7a25e3ec128f82aea6bea9ff6310ec5a",
"packagetype": "bdist_wheel",
"python_version": "py39",
"requires_python": ">=3.7",
"size": 2945960,
"upload_time": "2024-12-12T12:03:58",
"upload_time_iso_8601": "2024-12-12T12:03:58.613262Z",
"url": "https://files.pythonhosted.org/packages/df/52/c398f5fba8f4313d47b81428548366b6da662690dda06485847c334ec959/scikit_learn_intelex-2025.0.1-py39-none-win_amd64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-12 12:05:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "intel",
"github_project": "scikit-learn-intelex",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "scikit-learn-intelex"
}