Name | scikit-multilearn JSON |
Version |
0.2.0
JSON |
| download |
home_page | http://scikit.ml/ |
Summary | Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem. |
upload_time | 2018-12-10 16:24:47 |
maintainer | |
docs_url | None |
author | Piotr Szymański |
requires_python | |
license | BSD |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# scikit-multilearn
[![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn)
[![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)
[![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn)
[![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)
__scikit-multilearn__ is a Python module capable of performing multi-label
learning tasks. It is built on-top of various scientific Python packages
([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and
follows a similar API to that of [scikit-learn](http://scikit-learn.org/).
- __Website:__ [scikit.ml](http://scikit.ml)
- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)
## Features
- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).
- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.
- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.
## Dependencies
In most cases you will want to follow the requirements defined in the requirements/*.txt files in the package.
### Base dependencies
```
scipy
numpy
future
scikit-learn
liac-arff # for loading ARFF files
requests # for dataset module
networkx # for networkX base community detection clusterers
python-louvain # for networkX base community detection clusterers
keras
```
### GPL-incurring dependencies for two clusterers
```
python-igraph # for igraph library based clusterers
python-graphtool # for graphtool base clusterers
```
Note: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)
## Installation
To install scikit-multilearn, simply type the following command:
```bash
$ pip install scikit-multilearn
```
This will install the latest release from the Python package index. If you
wish to install the bleeding-edge version, then clone this repository and
run `setup.py`:
```bash
$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git
$ cd scikit-multilearn
$ python setup.py
```
## Basic Usage
Before proceeding to classification, this library assumes that you have
a dataset with the following matrices:
- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`
- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`
Suppose we wanted to use a problem-transformation method called Binary
Relevance, which treats each label as a separate single-label classification
problem, to a Support-vector machine (SVM) classifier, we simply perform
the following tasks:
```python
# Import BinaryRelevance from skmultilearn
from skmultilearn.problem_transform import BinaryRelevance
# Import SVC classifier from sklearn
from sklearn.svm import SVC
# Setup the classifier
classifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])
# Train
classifier.fit(X_train, y_train)
# Predict
y_pred = classifier.predict(X_test)
```
More examples and use-cases can be seen in the
[documentation](http://scikit.ml/api/classify.html). For using the MEKA
wrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).
## Contributing
This project is open for contributions. Here are some of the ways for
you to contribute:
- Bug reports/fix
- Features requests
- Use-case demonstrations
- Documentation updates
In case you want to implement your own multi-label classifier, please
read our [Developer's Guide](http://scikit.ml/api/base.html) to help
you integrate your implementation in our API.
To make a contribution, just fork this repository, push the changes
in your fork, open up an issue, and make a Pull Request!
We're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).
## Cite
If you used scikit-multilearn in your research or project, please
cite [our work](https://arxiv.org/abs/1702.01460):
```bibtex
@ARTICLE{2017arXiv170201460S,
author = {{Szyma{\'n}ski}, P. and {Kajdanowicz}, T.},
title = "{A scikit-based Python environment for performing multi-label classification}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1702.01460},
year = 2017,
month = feb
}
```
Raw data
{
"_id": null,
"home_page": "http://scikit.ml/",
"name": "scikit-multilearn",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Piotr Szyma\u0144ski",
"author_email": "niedakh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/fc/57/4c8951d3613c1cd569910bc3ddd5b3a755ad383297a12004eb2d61eefc06/scikit-multilearn-0.2.0.linux-x86_64.tar.gz",
"platform": "",
"description": "# scikit-multilearn\n\n[![PyPI version](https://badge.fury.io/py/scikit-multilearn.svg)](https://badge.fury.io/py/scikit-multilearn)\n[![License](https://img.shields.io/badge/License-BSD%202--Clause-orange.svg)](https://opensource.org/licenses/BSD-2-Clause)\n[![Build Status Linux and OSX](https://travis-ci.org/scikit-multilearn/scikit-multilearn.svg?branch=master)](https://travis-ci.org/scikit-multilearn/scikit-multilearn)\n[![Build Status Windows](https://ci.appveyor.com/api/projects/status/vd4k18u1lp5btaql/branch/master?svg=true)](https://ci.appveyor.com/project/niedakh/scikit-multilearn/branch/master)\n\n__scikit-multilearn__ is a Python module capable of performing multi-label\nlearning tasks. It is built on-top of various scientific Python packages\n([numpy](http://www.numpy.org/), [scipy](https://www.scipy.org/)) and\nfollows a similar API to that of [scikit-learn](http://scikit-learn.org/).\n\n- __Website:__ [scikit.ml](http://scikit.ml)\n- __Documentation:__ [scikit-multilearn Documentation](http://scikit.ml/api/skmultilearn.html)\n\n\n## Features\n\n- __Native Python implementation.__ A native Python implementation for a variety of multi-label classification algorithms. To see the list of all supported classifiers, check this [link](http://scikit.ml/#classifiers).\n\n- __Interface to Meka.__ A Meka wrapper class is implemented for reference purposes and integration. This provides access to all methods available in MEKA, MULAN, and WEKA — the reference standard in the field.\n\n- __Builds upon giants!__ Team-up with the power of numpy and scikit. You can use scikit-learn's base classifiers as scikit-multilearn's classifiers. In addition, the two packages follow a similar API.\n\n## Dependencies\n\nIn most cases you will want to follow the requirements defined in the requirements/*.txt files in the package. \n\n### Base dependencies\n```\nscipy\nnumpy\nfuture\nscikit-learn\nliac-arff # for loading ARFF files\nrequests # for dataset module\nnetworkx # for networkX base community detection clusterers\npython-louvain # for networkX base community detection clusterers\nkeras\n```\n\n### GPL-incurring dependencies for two clusterers\n```\npython-igraph # for igraph library based clusterers\npython-graphtool # for graphtool base clusterers\n```\n\nNote: Installing graphtool is complicated, please see: [graphtool install instructions](https://git.skewed.de/count0/graph-tool/wikis/installation-instructions)\n\n## Installation\n\nTo install scikit-multilearn, simply type the following command:\n\n```bash\n$ pip install scikit-multilearn\n```\n\nThis will install the latest release from the Python package index. If you\nwish to install the bleeding-edge version, then clone this repository and\nrun `setup.py`:\n\n```bash\n$ git clone https://github.com/scikit-multilearn/scikit-multilearn.git\n$ cd scikit-multilearn\n$ python setup.py\n```\n\n## Basic Usage\n\nBefore proceeding to classification, this library assumes that you have\na dataset with the following matrices:\n\n- `x_train`, `x_test`: training and test feature matrices of size `(n_samples, n_features)`\n- `y_train`, `y_test`: training and test label matrices of size `(n_samples, n_labels)`\n\nSuppose we wanted to use a problem-transformation method called Binary\nRelevance, which treats each label as a separate single-label classification\nproblem, to a Support-vector machine (SVM) classifier, we simply perform\nthe following tasks:\n\n```python\n# Import BinaryRelevance from skmultilearn\nfrom skmultilearn.problem_transform import BinaryRelevance\n\n# Import SVC classifier from sklearn\nfrom sklearn.svm import SVC\n\n# Setup the classifier\nclassifier = BinaryRelevance(classifier=SVC(), require_dense=[False,True])\n\n# Train\nclassifier.fit(X_train, y_train)\n\n# Predict\ny_pred = classifier.predict(X_test)\n```\n\nMore examples and use-cases can be seen in the \n[documentation](http://scikit.ml/api/classify.html). For using the MEKA\nwrapper, check this [link](http://scikit.ml/api/meka.html#mekawrapper).\n\n## Contributing\n\nThis project is open for contributions. Here are some of the ways for\nyou to contribute:\n\n- Bug reports/fix\n- Features requests\n- Use-case demonstrations\n- Documentation updates\n\nIn case you want to implement your own multi-label classifier, please \nread our [Developer's Guide](http://scikit.ml/api/base.html) to help\nyou integrate your implementation in our API.\n\nTo make a contribution, just fork this repository, push the changes\nin your fork, open up an issue, and make a Pull Request!\n\nWe're also available in Slack! Just go to our [slack group](https://scikit-ml.slack.com/).\n\n## Cite\n\nIf you used scikit-multilearn in your research or project, please\ncite [our work](https://arxiv.org/abs/1702.01460):\n\n```bibtex\n@ARTICLE{2017arXiv170201460S,\n author = {{Szyma{\\'n}ski}, P. and {Kajdanowicz}, T.},\n title = \"{A scikit-based Python environment for performing multi-label classification}\",\n journal = {ArXiv e-prints},\n archivePrefix = \"arXiv\",\n eprint = {1702.01460},\n year = 2017,\n month = feb\n}\n```\n\n\n",
"bugtrack_url": null,
"license": "BSD",
"summary": "Scikit-multilearn is a BSD-licensed library for multi-label classification that is built on top of the well-known scikit-learn ecosystem.",
"version": "0.2.0",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "c23e41337785bfb7f63c637e3d5c6cb9",
"sha256": "3179fed29b1492f6a69600696c23045b9f494d2b89d1796a8bdc43ccbb33712b"
},
"downloads": -1,
"filename": "scikit-multilearn-0.2.0.linux-x86_64.tar.gz",
"has_sig": false,
"md5_digest": "c23e41337785bfb7f63c637e3d5c6cb9",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 113675,
"upload_time": "2018-12-10T16:24:47",
"upload_time_iso_8601": "2018-12-10T16:24:47.310114Z",
"url": "https://files.pythonhosted.org/packages/fc/57/4c8951d3613c1cd569910bc3ddd5b3a755ad383297a12004eb2d61eefc06/scikit-multilearn-0.2.0.linux-x86_64.tar.gz",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "fc1a5adba295e7e7c0642b2a88d76780",
"sha256": "0a389600a6797db6567f2f6ca1d0dca30bebfaaa73f75de62d7ae40f8f03d4fb"
},
"downloads": -1,
"filename": "scikit_multilearn-0.2.0-py2-none-any.whl",
"has_sig": false,
"md5_digest": "fc1a5adba295e7e7c0642b2a88d76780",
"packagetype": "bdist_wheel",
"python_version": "py2",
"requires_python": null,
"size": 89365,
"upload_time": "2018-12-10T16:24:43",
"upload_time_iso_8601": "2018-12-10T16:24:43.323201Z",
"url": "https://files.pythonhosted.org/packages/21/82/9a5a40ac8bcf4be9662728df35d7e0a1f47454416e4d4480b8d0a1dc1a7b/scikit_multilearn-0.2.0-py2-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "d178b98b1a0320135d6b80f14058606e",
"sha256": "068c652f22704a084ca252d05d21a655e7c9b248d0a4543847b74de5fca2b3f0"
},
"downloads": -1,
"filename": "scikit_multilearn-0.2.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d178b98b1a0320135d6b80f14058606e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 89365,
"upload_time": "2018-12-10T16:24:45",
"upload_time_iso_8601": "2018-12-10T16:24:45.779298Z",
"url": "https://files.pythonhosted.org/packages/bb/1f/e6ff649c72a1cdf2c7a1d31eb21705110ce1c5d3e7e26b2cc300e1637272/scikit_multilearn-0.2.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2018-12-10 16:24:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "scikit-multilearn"
}