.. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/pipeline.svg
:target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master
:alt: pipeline status
.. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/coverage.svg
:target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master
:alt: coverage report
scikit-multimodallearn
======================
**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.
It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular
package for machine learning in Python.
Documentation
-------------
The **documentation** including installation instructions, API documentation
and examples is
`available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_.
Installation
------------
Dependencies
~~~~~~~~~~~~
**scikit-multimodallearn** works with **Python 3.5 or later**.
**scikit-multimodallearn** depends on **scikit-learn** (version 1.2.1).
Optionally, **matplotlib** is required to run the examples.
Installation using pip
~~~~~~~~~~~~~~~~~~~~~~
**scikit-multimodallearn** is
`available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_
and can be installed using **pip**::
pip install scikit-multimodallearn
Development
-----------
The development of this package follows the guidelines provided by the
scikit-learn community.
Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_
of the scikit-learn project for more details.
Source code
~~~~~~~~~~~
You can get the **source code** from the **Git** repository of the project::
git clone git@gitlab.lis-lab.fr:dev/scikit-multimodallearn.git
Testing
~~~~~~~
**pytest** and **pytest-cov** are required to run the **test suite** with::
cd multimodal
pytest
A code coverage report is displayed in the terminal when running the tests.
An HTML version of the report is also stored in the directory **htmlcov**.
Generating the documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The generation of the documentation requires **sphinx**, **sphinx-gallery**,
**numpydoc** and **matplotlib** and can be run with::
python setup.py build_sphinx
The resulting files are stored in the directory **build/sphinx/html**.
Credits
-------
**scikit-multimodallearn** is developped by the
`development team <https://developpement.lis-lab.fr/>`_ of the
`LIS <http://www.lis-lab.fr/>`_.
If you use **scikit-multimodallearn** in a scientific publication, please cite the
following paper::
@InProceedings{Koco:2011:BAMCC,
author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
and Vazirgiannis, Michalis},
title={A Boosting Approach to Multiview Classification with Cooperation},
booktitle={Proceedings of the 2011 European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume Part II},
year={2011},
location={Athens, Greece},
publisher={Springer-Verlag},
address={Berlin, Heidelberg},
pages={209--228},
numpages = {20},
isbn={978-3-642-23783-6}
url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
keywords={boosting, classification, multiview learning,
supervised learning},
}
@InProceedings{Huu:2019:BAMCC,
author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
editor={},
title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
booktitle={arXiv:1803.07821v1},
year={2018},
location={Athens, Greece},
publisher={},
address={},
pages={209--228},
numpages = {12}
isbn={978-3-642-23783-6}
url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
keywords={boosting, classification, multiview learning,
merric learning, vector-valued, kernel spaces},
}
References
~~~~~~~~~~
* Sokol Koço, Cécile Capponi,
`"Learning from Imbalanced Datasets with cross-view cooperation"`
Linking and mining heterogeneous an multi-view data, Unsupervised and
semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer
* Sokol Koço, Cécile Capponi,
`"A boosting approach to multiview classification with cooperation"
<https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,
Proceedings of the 2011 European Conference on Machine Learning (ECML),
Athens, Greece, pp.209-228, 2011, Springer-Verlag.
* Sokol Koço,
`"Tackling the uneven views problem with cooperation based ensemble
learning methods" <http://www.theses.fr/en/2013AIXM4101>`_,
PhD Thesis, Aix-Marseille Université, 2013.
* Riikka Huusari, Hachem Kadri and Cécile Capponi,
"Multi-View Metric Learning in Vector-Valued Kernel Spaces"
in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018
Copyright
~~~~~~~~~
Université d'Aix Marseille (AMU) -
Centre National de la Recherche Scientifique (CNRS) -
Université de Toulon (UTLN).
Copyright © 2017-2018 AMU, CNRS, UTLN
License
~~~~~~~
**scikit-multimodallearn** is free software: you can redistribute it and/or modify
it under the terms of the **New BSD License**
Raw data
{
"_id": null,
"home_page": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
"name": "scikit-multimodallearn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "machine learning, supervised learning, classification, ensemble methods, boosting, kernel",
"author": "Dominique Benielli and Sokol Ko\u00e7o and Florent Jaillet and Riikka Huusari and Baptiste Bauvin and C\u00e9cile Capponi and Hachem Kadri",
"author_email": "contact.dev@lis-lab.fr",
"download_url": "https://files.pythonhosted.org/packages/c5/13/96b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea/scikit_multimodallearn-0.0.2.tar.gz",
"platform": null,
"description": ".. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/pipeline.svg\n :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master\n :alt: pipeline status\n \n.. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/coverage.svg\n :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master\n :alt: coverage report\n\n\nscikit-multimodallearn\n======================\n\n**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.\n\nIt is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular\npackage for machine learning in Python.\n\n\nDocumentation\n-------------\n\nThe **documentation** including installation instructions, API documentation\nand examples is\n`available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_.\n\n\nInstallation\n------------\n\nDependencies\n~~~~~~~~~~~~\n\n**scikit-multimodallearn** works with **Python 3.5 or later**.\n\n**scikit-multimodallearn** depends on **scikit-learn** (version 1.2.1).\n\nOptionally, **matplotlib** is required to run the examples.\n\nInstallation using pip\n~~~~~~~~~~~~~~~~~~~~~~\n\n**scikit-multimodallearn** is\n`available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_\nand can be installed using **pip**::\n\n pip install scikit-multimodallearn\n\n\nDevelopment\n-----------\n\nThe development of this package follows the guidelines provided by the\nscikit-learn community.\n\nRefer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_\nof the scikit-learn project for more details.\n\nSource code\n~~~~~~~~~~~\n\nYou can get the **source code** from the **Git** repository of the project::\n\n git clone git@gitlab.lis-lab.fr:dev/scikit-multimodallearn.git\n\nTesting\n~~~~~~~\n\n**pytest** and **pytest-cov** are required to run the **test suite** with::\n\n cd multimodal\n pytest\n\nA code coverage report is displayed in the terminal when running the tests.\nAn HTML version of the report is also stored in the directory **htmlcov**.\n\n\nGenerating the documentation\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nThe generation of the documentation requires **sphinx**, **sphinx-gallery**,\n**numpydoc** and **matplotlib** and can be run with::\n\n python setup.py build_sphinx\n\nThe resulting files are stored in the directory **build/sphinx/html**.\n\n\nCredits\n-------\n\n**scikit-multimodallearn** is developped by the\n`development team <https://developpement.lis-lab.fr/>`_ of the\n`LIS <http://www.lis-lab.fr/>`_.\n\nIf you use **scikit-multimodallearn** in a scientific publication, please cite the\nfollowing paper::\n\n @InProceedings{Koco:2011:BAMCC,\n author={Ko\\c{c}o, Sokol and Capponi, C{\\'e}cile},\n editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato\n and Vazirgiannis, Michalis},\n title={A Boosting Approach to Multiview Classification with Cooperation},\n booktitle={Proceedings of the 2011 European Conference on Machine Learning\n and Knowledge Discovery in Databases - Volume Part II},\n year={2011},\n location={Athens, Greece},\n publisher={Springer-Verlag},\n address={Berlin, Heidelberg},\n pages={209--228},\n numpages = {20},\n isbn={978-3-642-23783-6}\n url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},\n keywords={boosting, classification, multiview learning,\n supervised learning},\n }\n\n @InProceedings{Huu:2019:BAMCC,\n author={Huusari, Riika, Kadri Hachem and Capponi, C{\\'e}cile},\n editor={},\n title={Multi-view Metric Learning in Vector-valued Kernel Spaces},\n booktitle={arXiv:1803.07821v1},\n year={2018},\n location={Athens, Greece},\n publisher={},\n address={},\n pages={209--228},\n numpages = {12}\n isbn={978-3-642-23783-6}\n url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},\n keywords={boosting, classification, multiview learning,\n merric learning, vector-valued, kernel spaces},\n }\n\nReferences\n~~~~~~~~~~\n* Sokol Ko\u00e7o, C\u00e9cile Capponi,\n `\"Learning from Imbalanced Datasets with cross-view cooperation\"`\n Linking and mining heterogeneous an multi-view data, Unsupervised and\n semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer\n\n* Sokol Ko\u00e7o, C\u00e9cile Capponi,\n `\"A boosting approach to multiview classification with cooperation\"\n <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,\n Proceedings of the 2011 European Conference on Machine Learning (ECML),\n Athens, Greece, pp.209-228, 2011, Springer-Verlag.\n\n* Sokol Ko\u00e7o,\n `\"Tackling the uneven views problem with cooperation based ensemble\n learning methods\" <http://www.theses.fr/en/2013AIXM4101>`_,\n PhD Thesis, Aix-Marseille Universit\u00e9, 2013.\n\n* Riikka Huusari, Hachem Kadri and C\u00e9cile Capponi,\n \"Multi-View Metric Learning in Vector-Valued Kernel Spaces\"\n in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018\n\nCopyright\n~~~~~~~~~\n\nUniversit\u00e9 d'Aix Marseille (AMU) -\nCentre National de la Recherche Scientifique (CNRS) -\nUniversit\u00e9 de Toulon (UTLN).\n\nCopyright \u00a9 2017-2018 AMU, CNRS, UTLN\n\nLicense\n~~~~~~~\n\n**scikit-multimodallearn** is free software: you can redistribute it and/or modify\nit under the terms of the **New BSD License**\n",
"bugtrack_url": null,
"license": "newBSD",
"summary": "A scikit-learn compatible package for multimodal Classifiers",
"version": "0.0.2",
"project_urls": {
"Documentation": "http://dev.pages.lis-lab.fr/scikit-multimodallearn",
"Homepage": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
"Source": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
"Tracker": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/issues"
},
"split_keywords": [
"machine learning",
" supervised learning",
" classification",
" ensemble methods",
" boosting",
" kernel"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5fe901e063f70b536f9118c16116fb81b51e05783e65880e13097bbfef8d0ff6",
"md5": "f9d2be6ed6a17731c1cadc071599dbb2",
"sha256": "547a9ff360093ff7914a898a8761869e6648527fcd1664db8edd3e6590c2e420"
},
"downloads": -1,
"filename": "scikit_multimodallearn-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f9d2be6ed6a17731c1cadc071599dbb2",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 58994,
"upload_time": "2024-09-26T13:16:38",
"upload_time_iso_8601": "2024-09-26T13:16:38.932261Z",
"url": "https://files.pythonhosted.org/packages/5f/e9/01e063f70b536f9118c16116fb81b51e05783e65880e13097bbfef8d0ff6/scikit_multimodallearn-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c51396b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea",
"md5": "73800507e1902186761137f548a19b58",
"sha256": "2be909146a46326d096622dd440eb2c0f746ea6479414a7c43e9c7d659729113"
},
"downloads": -1,
"filename": "scikit_multimodallearn-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "73800507e1902186761137f548a19b58",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 52509,
"upload_time": "2024-09-26T13:16:41",
"upload_time_iso_8601": "2024-09-26T13:16:41.278599Z",
"url": "https://files.pythonhosted.org/packages/c5/13/96b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea/scikit_multimodallearn-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-26 13:16:41",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "scikit-multimodallearn"
}