scikit-multimodallearn


Namescikit-multimodallearn JSON
Version 0.0.2 PyPI version JSON
download
home_pagehttps://gitlab.lis-lab.fr/dev/scikit-multimodallearn
SummaryA scikit-learn compatible package for multimodal Classifiers
upload_time2024-09-26 13:16:41
maintainerNone
docs_urlNone
authorDominique Benielli and Sokol Koço and Florent Jaillet and Riikka Huusari and Baptiste Bauvin and Cécile Capponi and Hachem Kadri
requires_python>=3.6
licensenewBSD
keywords machine learning supervised learning classification ensemble methods boosting kernel
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/pipeline.svg
    :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master
    :alt: pipeline status
    
.. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/coverage.svg
    :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master
    :alt: coverage report


scikit-multimodallearn
======================

**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.

It is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular
package for machine learning in Python.


Documentation
-------------

The **documentation** including installation instructions, API documentation
and examples is
`available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_.


Installation
------------

Dependencies
~~~~~~~~~~~~

**scikit-multimodallearn** works with **Python 3.5 or later**.

**scikit-multimodallearn** depends on **scikit-learn** (version 1.2.1).

Optionally, **matplotlib** is required to run the examples.

Installation using pip
~~~~~~~~~~~~~~~~~~~~~~

**scikit-multimodallearn** is
`available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_
and can be installed using **pip**::

  pip install scikit-multimodallearn


Development
-----------

The development of this package follows the guidelines provided by the
scikit-learn community.

Refer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_
of the scikit-learn project for more details.

Source code
~~~~~~~~~~~

You can get the **source code** from the **Git** repository of the project::

  git clone git@gitlab.lis-lab.fr:dev/scikit-multimodallearn.git

Testing
~~~~~~~

**pytest** and **pytest-cov** are required to run the **test suite** with::

  cd multimodal
  pytest

A code coverage report is displayed in the terminal when running the tests.
An HTML version of the report is also stored in the directory **htmlcov**.


Generating the documentation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The generation of the documentation requires **sphinx**, **sphinx-gallery**,
**numpydoc** and **matplotlib** and can be run with::

  python setup.py build_sphinx

The resulting files are stored in the directory **build/sphinx/html**.


Credits
-------

**scikit-multimodallearn** is developped by the
`development team <https://developpement.lis-lab.fr/>`_ of the
`LIS <http://www.lis-lab.fr/>`_.

If you use **scikit-multimodallearn** in a scientific publication, please cite the
following paper::

 @InProceedings{Koco:2011:BAMCC,
  author={Ko\c{c}o, Sokol and Capponi, C{\'e}cile},
  editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato
          and Vazirgiannis, Michalis},
  title={A Boosting Approach to Multiview Classification with Cooperation},
  booktitle={Proceedings of the 2011 European Conference on Machine Learning
             and Knowledge Discovery in Databases - Volume Part II},
  year={2011},
  location={Athens, Greece},
  publisher={Springer-Verlag},
  address={Berlin, Heidelberg},
  pages={209--228},
  numpages = {20},
  isbn={978-3-642-23783-6}
  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
  keywords={boosting, classification, multiview learning,
            supervised learning},
 }

 @InProceedings{Huu:2019:BAMCC,
  author={Huusari, Riika, Kadri Hachem and Capponi, C{\'e}cile},
  editor={},
  title={Multi-view Metric Learning in Vector-valued Kernel Spaces},
  booktitle={arXiv:1803.07821v1},
  year={2018},
  location={Athens, Greece},
  publisher={},
  address={},
  pages={209--228},
  numpages = {12}
  isbn={978-3-642-23783-6}
  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},
  keywords={boosting, classification, multiview learning,
            merric learning, vector-valued, kernel spaces},
 }

References
~~~~~~~~~~
* Sokol Koço, Cécile Capponi,
  `"Learning from Imbalanced Datasets with cross-view cooperation"`
  Linking and mining heterogeneous an multi-view data, Unsupervised and
  semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer

* Sokol Koço, Cécile Capponi,
  `"A boosting approach to multiview classification with cooperation"
  <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,
  Proceedings of the 2011 European Conference on Machine Learning (ECML),
  Athens, Greece, pp.209-228, 2011, Springer-Verlag.

* Sokol Koço,
  `"Tackling the uneven views problem with cooperation based ensemble
  learning methods" <http://www.theses.fr/en/2013AIXM4101>`_,
  PhD Thesis, Aix-Marseille Université, 2013.

* Riikka Huusari, Hachem Kadri and Cécile Capponi,
  "Multi-View Metric Learning in Vector-Valued Kernel Spaces"
  in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018

Copyright
~~~~~~~~~

Université d'Aix Marseille (AMU) -
Centre National de la Recherche Scientifique (CNRS) -
Université de Toulon (UTLN).

Copyright © 2017-2018 AMU, CNRS, UTLN

License
~~~~~~~

**scikit-multimodallearn** is free software: you can redistribute it and/or modify
it under the terms of the **New BSD License**

            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
    "name": "scikit-multimodallearn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "machine learning, supervised learning, classification, ensemble methods, boosting, kernel",
    "author": "Dominique Benielli and Sokol Ko\u00e7o and Florent Jaillet and Riikka Huusari and Baptiste Bauvin and C\u00e9cile Capponi and Hachem Kadri",
    "author_email": "contact.dev@lis-lab.fr",
    "download_url": "https://files.pythonhosted.org/packages/c5/13/96b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea/scikit_multimodallearn-0.0.2.tar.gz",
    "platform": null,
    "description": ".. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/pipeline.svg\n    :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master\n    :alt: pipeline status\n    \n.. image:: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master/coverage.svg\n    :target: https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/badges/master\n    :alt: coverage report\n\n\nscikit-multimodallearn\n======================\n\n**scikit-multimodallearn** is a Python package implementing algorithms multimodal data.\n\nIt is compatible with `scikit-learn <http://scikit-learn.org/>`_, a popular\npackage for machine learning in Python.\n\n\nDocumentation\n-------------\n\nThe **documentation** including installation instructions, API documentation\nand examples is\n`available online <http://dev.pages.lis-lab.fr/scikit-multimodallearn>`_.\n\n\nInstallation\n------------\n\nDependencies\n~~~~~~~~~~~~\n\n**scikit-multimodallearn** works with **Python 3.5 or later**.\n\n**scikit-multimodallearn** depends on **scikit-learn** (version 1.2.1).\n\nOptionally, **matplotlib** is required to run the examples.\n\nInstallation using pip\n~~~~~~~~~~~~~~~~~~~~~~\n\n**scikit-multimodallearn** is\n`available on PyPI <https://pypi.org/project/scikit-multimodallearn/>`_\nand can be installed using **pip**::\n\n  pip install scikit-multimodallearn\n\n\nDevelopment\n-----------\n\nThe development of this package follows the guidelines provided by the\nscikit-learn community.\n\nRefer to the `Developer's Guide <http://scikit-learn.org/stable/developers>`_\nof the scikit-learn project for more details.\n\nSource code\n~~~~~~~~~~~\n\nYou can get the **source code** from the **Git** repository of the project::\n\n  git clone git@gitlab.lis-lab.fr:dev/scikit-multimodallearn.git\n\nTesting\n~~~~~~~\n\n**pytest** and **pytest-cov** are required to run the **test suite** with::\n\n  cd multimodal\n  pytest\n\nA code coverage report is displayed in the terminal when running the tests.\nAn HTML version of the report is also stored in the directory **htmlcov**.\n\n\nGenerating the documentation\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nThe generation of the documentation requires **sphinx**, **sphinx-gallery**,\n**numpydoc** and **matplotlib** and can be run with::\n\n  python setup.py build_sphinx\n\nThe resulting files are stored in the directory **build/sphinx/html**.\n\n\nCredits\n-------\n\n**scikit-multimodallearn** is developped by the\n`development team <https://developpement.lis-lab.fr/>`_ of the\n`LIS <http://www.lis-lab.fr/>`_.\n\nIf you use **scikit-multimodallearn** in a scientific publication, please cite the\nfollowing paper::\n\n @InProceedings{Koco:2011:BAMCC,\n  author={Ko\\c{c}o, Sokol and Capponi, C{\\'e}cile},\n  editor={Gunopulos, Dimitrios and Hofmann, Thomas and Malerba, Donato\n          and Vazirgiannis, Michalis},\n  title={A Boosting Approach to Multiview Classification with Cooperation},\n  booktitle={Proceedings of the 2011 European Conference on Machine Learning\n             and Knowledge Discovery in Databases - Volume Part II},\n  year={2011},\n  location={Athens, Greece},\n  publisher={Springer-Verlag},\n  address={Berlin, Heidelberg},\n  pages={209--228},\n  numpages = {20},\n  isbn={978-3-642-23783-6}\n  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},\n  keywords={boosting, classification, multiview learning,\n            supervised learning},\n }\n\n @InProceedings{Huu:2019:BAMCC,\n  author={Huusari, Riika, Kadri Hachem and Capponi, C{\\'e}cile},\n  editor={},\n  title={Multi-view Metric Learning in Vector-valued Kernel Spaces},\n  booktitle={arXiv:1803.07821v1},\n  year={2018},\n  location={Athens, Greece},\n  publisher={},\n  address={},\n  pages={209--228},\n  numpages = {12}\n  isbn={978-3-642-23783-6}\n  url={https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14},\n  keywords={boosting, classification, multiview learning,\n            merric learning, vector-valued, kernel spaces},\n }\n\nReferences\n~~~~~~~~~~\n* Sokol Ko\u00e7o, C\u00e9cile Capponi,\n  `\"Learning from Imbalanced Datasets with cross-view cooperation\"`\n  Linking and mining heterogeneous an multi-view data, Unsupervised and\n  semi-supervised learning Series Editor M. Emre Celeri, pp 161-182, Springer\n\n* Sokol Ko\u00e7o, C\u00e9cile Capponi,\n  `\"A boosting approach to multiview classification with cooperation\"\n  <https://link.springer.com/chapter/10.1007/978-3-642-23783-6_14>`_,\n  Proceedings of the 2011 European Conference on Machine Learning (ECML),\n  Athens, Greece, pp.209-228, 2011, Springer-Verlag.\n\n* Sokol Ko\u00e7o,\n  `\"Tackling the uneven views problem with cooperation based ensemble\n  learning methods\" <http://www.theses.fr/en/2013AIXM4101>`_,\n  PhD Thesis, Aix-Marseille Universit\u00e9, 2013.\n\n* Riikka Huusari, Hachem Kadri and C\u00e9cile Capponi,\n  \"Multi-View Metric Learning in Vector-Valued Kernel Spaces\"\n  in International Conference on Artificial Intelligence and Statistics (AISTATS) 2018\n\nCopyright\n~~~~~~~~~\n\nUniversit\u00e9 d'Aix Marseille (AMU) -\nCentre National de la Recherche Scientifique (CNRS) -\nUniversit\u00e9 de Toulon (UTLN).\n\nCopyright \u00a9 2017-2018 AMU, CNRS, UTLN\n\nLicense\n~~~~~~~\n\n**scikit-multimodallearn** is free software: you can redistribute it and/or modify\nit under the terms of the **New BSD License**\n",
    "bugtrack_url": null,
    "license": "newBSD",
    "summary": "A scikit-learn compatible package for multimodal Classifiers",
    "version": "0.0.2",
    "project_urls": {
        "Documentation": "http://dev.pages.lis-lab.fr/scikit-multimodallearn",
        "Homepage": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
        "Source": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn",
        "Tracker": "https://gitlab.lis-lab.fr/dev/scikit-multimodallearn/issues"
    },
    "split_keywords": [
        "machine learning",
        " supervised learning",
        " classification",
        " ensemble methods",
        " boosting",
        " kernel"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5fe901e063f70b536f9118c16116fb81b51e05783e65880e13097bbfef8d0ff6",
                "md5": "f9d2be6ed6a17731c1cadc071599dbb2",
                "sha256": "547a9ff360093ff7914a898a8761869e6648527fcd1664db8edd3e6590c2e420"
            },
            "downloads": -1,
            "filename": "scikit_multimodallearn-0.0.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f9d2be6ed6a17731c1cadc071599dbb2",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 58994,
            "upload_time": "2024-09-26T13:16:38",
            "upload_time_iso_8601": "2024-09-26T13:16:38.932261Z",
            "url": "https://files.pythonhosted.org/packages/5f/e9/01e063f70b536f9118c16116fb81b51e05783e65880e13097bbfef8d0ff6/scikit_multimodallearn-0.0.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c51396b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea",
                "md5": "73800507e1902186761137f548a19b58",
                "sha256": "2be909146a46326d096622dd440eb2c0f746ea6479414a7c43e9c7d659729113"
            },
            "downloads": -1,
            "filename": "scikit_multimodallearn-0.0.2.tar.gz",
            "has_sig": false,
            "md5_digest": "73800507e1902186761137f548a19b58",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 52509,
            "upload_time": "2024-09-26T13:16:41",
            "upload_time_iso_8601": "2024-09-26T13:16:41.278599Z",
            "url": "https://files.pythonhosted.org/packages/c5/13/96b52278d1ca26e8c9e27d8b3ffedb563cc8b758d8a5eb4d8f5d3cc0a1ea/scikit_multimodallearn-0.0.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-26 13:16:41",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "scikit-multimodallearn"
}
        
Elapsed time: 0.30678s