scipion-em-cryocare


Namescipion-em-cryocare JSON
Version 4.1.0 PyPI version JSON
download
home_pagehttps://github.com/scipion-em/scipion-em-cryocare
SummaryPlugin to use cryoCARE inside scipion.
upload_time2024-04-10 09:38:53
maintainerNone
docs_urlNone
authorTim-Oliver Buchholz, Scipion Team
requires_pythonNone
licenseNone
keywords scipion cryoem imageprocessing scipion-3.0 tomagraphy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===========================
Scipion plugin for cryoCARE
===========================

.. image:: https://img.shields.io/pypi/v/scipion-em-cryocare.svg
        :target: https://pypi.python.org/pypi/scipion-em-cryocare
        :alt: PyPI release

.. image:: https://img.shields.io/pypi/l/scipion-em-cryocare.svg
        :target: https://pypi.python.org/pypi/scipion-em-cryocare
        :alt: License

.. image:: https://img.shields.io/pypi/pyversions/scipion-em-cryocare.svg
        :target: https://pypi.python.org/pypi/scipion-em-cryocare
        :alt: Supported Python versions

.. image:: https://img.shields.io/pypi/dm/scipion-em-cryocare
        :target: https://pypi.python.org/pypi/scipion-em-cryocare
        :alt: Downloads

This plugin allows to use cryoCARE_ -trains a denoising U-Net for tomographic reconstruction according to the
Noise2Noise_ training paradigm- tomography methods into Scipion framework.

============
Installation
============
The plugin can be installed in user (stable) or developer (latest, may be unstable) mode:

**1. User (stable) version:**:

.. code-block::

    scipion3 installp -p scipion-em-cryocare

**2. Developer (latest, may be unstable) version:**:

* Clone the source code repository:

.. code-block::

    git clone https://github.com/scipion-em/scipion-em-cryocare.git

* Install:

.. code-block::

    scipion3 installp -p local/path/to/scipion-em-cryocare --devel

=========
Protocols
=========
The integrated protocols are:

1. Load a previously trained model.

2. Generate the training data.

3. Training: uses two data-independent reconstructed tomograms to train a 3D cryoCARE network.

4. Predict: generates the final restored tomogram by applying the cryoCARE trained network to both
even/odd tomograms followed by per-pixel averaging.

=====
Tests
=====

The installation can be checked out running some tests. To list all of them, execute:

.. code-block::

     scipion3 tests --grep cryocare

To run all of them, execute:

.. code-block::

     scipion3 tests --grep cryocare --run

========
Tutorial
========

The test generates a cryoCARE workflow that can be used as a guide about how to use cryoCARE. The even/odd tomograms
required to use cryoCARE can be generated inside Scipion with:

1. Plugin scipion-em-motioncorr_: protocol "align tilt-series movies".

2. Plugin scipion-em-xmipptomo_: protocol "tilt-series flexalign".

==========
References
==========

* `Cryo-CARE: Content-Aware Image Restoration for Cryo-Transmission Electron Microscopy Data. <http://doi.org/10.1109/ISBI.2019.8759519>`_
  Tim-Oliver Buchholz et al., 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).

===================
Contact information
===================

If you experiment any problem, please contact us here: scipion-users@lists.sourceforge.net or open an issue_.

We'll be pleased to help.

*Scipion Team*


.. _cryoCARE: https://github.com/juglab/cryoCARE_pip
.. _Noise2Noise: https://arxiv.org/pdf/1803.04189.pdf
.. _scipion-em-motioncorr: https://github.com/scipion-em/scipion-em-motioncorr
.. _scipion-em-xmipptomo: https://github.com/I2PC/scipion-em-xmipptomo
.. _issue: https://github.com/scipion-em/scipion-em-cryocare/issues
            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/scipion-em/scipion-em-cryocare",
    "name": "scipion-em-cryocare",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "scipion cryoem imageprocessing scipion-3.0 tomagraphy",
    "author": "Tim-Oliver Buchholz, Scipion Team",
    "author_email": "scipion@cnb.csic.es",
    "download_url": "https://files.pythonhosted.org/packages/ac/dd/e95c7dd79b63685ba85d8deb3ea0d41a53b65f79b939a0dfea97f38a4d12/scipion-em-cryocare-4.1.0.tar.gz",
    "platform": null,
    "description": "===========================\nScipion plugin for cryoCARE\n===========================\n\n.. image:: https://img.shields.io/pypi/v/scipion-em-cryocare.svg\n        :target: https://pypi.python.org/pypi/scipion-em-cryocare\n        :alt: PyPI release\n\n.. image:: https://img.shields.io/pypi/l/scipion-em-cryocare.svg\n        :target: https://pypi.python.org/pypi/scipion-em-cryocare\n        :alt: License\n\n.. image:: https://img.shields.io/pypi/pyversions/scipion-em-cryocare.svg\n        :target: https://pypi.python.org/pypi/scipion-em-cryocare\n        :alt: Supported Python versions\n\n.. image:: https://img.shields.io/pypi/dm/scipion-em-cryocare\n        :target: https://pypi.python.org/pypi/scipion-em-cryocare\n        :alt: Downloads\n\nThis plugin allows to use cryoCARE_ -trains a denoising U-Net for tomographic reconstruction according to the\nNoise2Noise_ training paradigm- tomography methods into Scipion framework.\n\n============\nInstallation\n============\nThe plugin can be installed in user (stable) or developer (latest, may be unstable) mode:\n\n**1. User (stable) version:**:\n\n.. code-block::\n\n    scipion3 installp -p scipion-em-cryocare\n\n**2. Developer (latest, may be unstable) version:**:\n\n* Clone the source code repository:\n\n.. code-block::\n\n    git clone https://github.com/scipion-em/scipion-em-cryocare.git\n\n* Install:\n\n.. code-block::\n\n    scipion3 installp -p local/path/to/scipion-em-cryocare --devel\n\n=========\nProtocols\n=========\nThe integrated protocols are:\n\n1. Load a previously trained model.\n\n2. Generate the training data.\n\n3. Training: uses two data-independent reconstructed tomograms to train a 3D cryoCARE network.\n\n4. Predict: generates the final restored tomogram by applying the cryoCARE trained network to both\neven/odd tomograms followed by per-pixel averaging.\n\n=====\nTests\n=====\n\nThe installation can be checked out running some tests. To list all of them, execute:\n\n.. code-block::\n\n     scipion3 tests --grep cryocare\n\nTo run all of them, execute:\n\n.. code-block::\n\n     scipion3 tests --grep cryocare --run\n\n========\nTutorial\n========\n\nThe test generates a cryoCARE workflow that can be used as a guide about how to use cryoCARE. The even/odd tomograms\nrequired to use cryoCARE can be generated inside Scipion with:\n\n1. Plugin scipion-em-motioncorr_: protocol \"align tilt-series movies\".\n\n2. Plugin scipion-em-xmipptomo_: protocol \"tilt-series flexalign\".\n\n==========\nReferences\n==========\n\n* `Cryo-CARE: Content-Aware Image Restoration for Cryo-Transmission Electron Microscopy Data. <http://doi.org/10.1109/ISBI.2019.8759519>`_\n  Tim-Oliver Buchholz et al., 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019).\n\n===================\nContact information\n===================\n\nIf you experiment any problem, please contact us here: scipion-users@lists.sourceforge.net or open an issue_.\n\nWe'll be pleased to help.\n\n*Scipion Team*\n\n\n.. _cryoCARE: https://github.com/juglab/cryoCARE_pip\n.. _Noise2Noise: https://arxiv.org/pdf/1803.04189.pdf\n.. _scipion-em-motioncorr: https://github.com/scipion-em/scipion-em-motioncorr\n.. _scipion-em-xmipptomo: https://github.com/I2PC/scipion-em-xmipptomo\n.. _issue: https://github.com/scipion-em/scipion-em-cryocare/issues",
    "bugtrack_url": null,
    "license": null,
    "summary": "Plugin to use cryoCARE inside scipion.",
    "version": "4.1.0",
    "project_urls": {
        "Homepage": "https://github.com/scipion-em/scipion-em-cryocare"
    },
    "split_keywords": [
        "scipion",
        "cryoem",
        "imageprocessing",
        "scipion-3.0",
        "tomagraphy"
    ],
    "urls": [
        {
            "comment_text": "scipion-3.0",
            "digests": {
                "blake2b_256": "acdde95c7dd79b63685ba85d8deb3ea0d41a53b65f79b939a0dfea97f38a4d12",
                "md5": "fcc6878b7232d1803eab183f7531804e",
                "sha256": "0d528a064e069c996a249ba9bf36a3a4e0f49ea3d900b51c20be59df29b339b3"
            },
            "downloads": -1,
            "filename": "scipion-em-cryocare-4.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "fcc6878b7232d1803eab183f7531804e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 56691,
            "upload_time": "2024-04-10T09:38:53",
            "upload_time_iso_8601": "2024-04-10T09:38:53.948568Z",
            "url": "https://files.pythonhosted.org/packages/ac/dd/e95c7dd79b63685ba85d8deb3ea0d41a53b65f79b939a0dfea97f38a4d12/scipion-em-cryocare-4.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-10 09:38:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scipion-em",
    "github_project": "scipion-em-cryocare",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "scipion-em-cryocare"
}
        
Elapsed time: 3.15257s