# SCLUDAM (**S**tar **CLU**ster **D**etection **A**nd **M**embership estimation)
[![Build Status](https://travis-ci.com/simonpedrogonzalez/scludam.svg?branch=main)](https://travis-ci.com/simonpedrogonzalez/scludam)
[![Documentation Status](https://img.shields.io/badge/docs-passing-success)](https://simonpedrogonzalez.github.io/scludam-docs/index.html)
[![PyPI](https://img.shields.io/pypi/v/scludam)](https://pypi.org/project/scludam/)
[![Python 3.7.6+](https://img.shields.io/badge/python-3.7.6+-blue.svg)](https://github.com/simonpedrogonzalez/scludam)
[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://github.com/simonpedrogonzalez/scludam)
[![License](https://img.shields.io/badge/License-GNU-blue.svg)](https://tldrlegal.com/license/gnu-lesser-general-public-license-v3-(lgpl-3))
**SCLUDAM** (**S**tar **CLU**ster **D**etection **A**nd **M**embership estimation) is a Python package for GAIA catalogues **data fetching**, **star cluster detection** and **star cluster membership estimation**.
### Repository and issues
[https://github.com/simonpedrogonzalez/scludam](https://github.com/simonpedrogonzalez/scludam)
### Authors
- Simón Pedro González.
Email: [simon.pedro.g@gmail.com](simon.pedro.g@gmail.com)
### Features
Included modules and features are:
- **fetcher**: Query builder for easy access to GAIA catalogues data, functions to get catalogues and SIMBAD objects information.
- **stat_tests**: Set of three clusterability tests that can be used to detect the presence of a cluster in a sample.
- **synthetic**: Classes that can be used to generate synthetic astrometric samples by specifying the distributions and parameter values.
- **detection**: Detection of star clusters in a sample using an improved version of the Star Counts algorithm.
- **shdbscan**: Soft clustering based on the **HDBSCAN** algorithm.
- **hkde**: Kernel density estimation with per-observation or per-dimension variable bandwidth.
- **membership**: Membership probability estimation based on **hkde** smoothing.
- **pipeline**: Pipeline for the detection and membership estimation, with default values and convenience functions.
- **plots**: Plot detection and membership estimation results alongside SIMBAD objects for better result interpretation.
--------------------------------------------------------------------------------
### Requirements
**Python 3.7.6+** are needed to run SCLUDAM. It is recommended to install scludam in a separate environment created with pyenv or conda, to avoid dependencies issues with other preinstalled packages in the base environment. The following dependencies will be installed along with SCLUDAM:
- numpy>=1.21.6
- matplotlib>=3.4.1
- scipy>=1.7.3
- astropy>=4.3.1
- astroquery>=0.4.6
- pandas>=1.3.5
- hdbscan==0.8.27
- scikit-learn>=1.0.2
- scikit-image>=0.18.1
- seaborn>=0.11.0
- attrs>=21.4.0
- beartype>=0.10.0
- ordered_set>=4.0.2
- statsmodels>=0.12.2
- diptest>=0.4.2
- typing_extensions>=4.2.0
### User install in a Conda environment (recommended)
Create a conda environment named ``myscludamenv`` with python3.8 and ``scludam`` installed
```
conda create --name myscludamenv python=3.8 pip --yes
conda activate myscludamenv
python -m pip install scludam
```
### Update scludam in a Conda environment
```
conda activate myscludamenv
python -m pip install -U scludam
python -m pip show scludam
```
### Simple user install
Install from PyPi:
```python -m pip install scludam```
### Simple user update
Update from PyPi:
```python -m pip install -U scludam```
### Dev install
Clone the repo and run the following command in the cloned directory (with your environment activated):
```python -m pip install -e .[dev]```
Raw data
{
"_id": null,
"home_page": "http://packages.python.org/scludam",
"name": "scludam",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "star cluster detection membership probabilities",
"author": "Sim\u00f3n Pedro Gonz\u00e1lez",
"author_email": "simon.pedro.g@gmail.com",
"download_url": null,
"platform": null,
"description": "# SCLUDAM (**S**tar **CLU**ster **D**etection **A**nd **M**embership estimation)\n\n[![Build Status](https://travis-ci.com/simonpedrogonzalez/scludam.svg?branch=main)](https://travis-ci.com/simonpedrogonzalez/scludam)\n[![Documentation Status](https://img.shields.io/badge/docs-passing-success)](https://simonpedrogonzalez.github.io/scludam-docs/index.html)\n[![PyPI](https://img.shields.io/pypi/v/scludam)](https://pypi.org/project/scludam/)\n[![Python 3.7.6+](https://img.shields.io/badge/python-3.7.6+-blue.svg)](https://github.com/simonpedrogonzalez/scludam)\n[![Python 3.8+](https://img.shields.io/badge/python-3.8+-blue.svg)](https://github.com/simonpedrogonzalez/scludam)\n[![License](https://img.shields.io/badge/License-GNU-blue.svg)](https://tldrlegal.com/license/gnu-lesser-general-public-license-v3-(lgpl-3))\n\n\n**SCLUDAM** (**S**tar **CLU**ster **D**etection **A**nd **M**embership estimation) is a Python package for GAIA catalogues **data fetching**, **star cluster detection** and **star cluster membership estimation**.\n\n### Repository and issues\n[https://github.com/simonpedrogonzalez/scludam](https://github.com/simonpedrogonzalez/scludam)\n\n### Authors\n- Sim\u00f3n Pedro Gonz\u00e1lez. \nEmail: [simon.pedro.g@gmail.com](simon.pedro.g@gmail.com)\n\n### Features\nIncluded modules and features are:\n\n- **fetcher**: Query builder for easy access to GAIA catalogues data, functions to get catalogues and SIMBAD objects information.\n\n- **stat_tests**: Set of three clusterability tests that can be used to detect the presence of a cluster in a sample.\n\n- **synthetic**: Classes that can be used to generate synthetic astrometric samples by specifying the distributions and parameter values.\n\n- **detection**: Detection of star clusters in a sample using an improved version of the Star Counts algorithm.\n\n- **shdbscan**: Soft clustering based on the **HDBSCAN** algorithm.\n\n- **hkde**: Kernel density estimation with per-observation or per-dimension variable bandwidth.\n\n- **membership**: Membership probability estimation based on **hkde** smoothing.\n\n- **pipeline**: Pipeline for the detection and membership estimation, with default values and convenience functions.\n\n- **plots**: Plot detection and membership estimation results alongside SIMBAD objects for better result interpretation.\n\n--------------------------------------------------------------------------------\n\n### Requirements\n**Python 3.7.6+** are needed to run SCLUDAM. It is recommended to install scludam in a separate environment created with pyenv or conda, to avoid dependencies issues with other preinstalled packages in the base environment. The following dependencies will be installed along with SCLUDAM:\n\n- numpy>=1.21.6\n- matplotlib>=3.4.1\n- scipy>=1.7.3\n- astropy>=4.3.1\n- astroquery>=0.4.6\n- pandas>=1.3.5\n- hdbscan==0.8.27\n- scikit-learn>=1.0.2\n- scikit-image>=0.18.1\n- seaborn>=0.11.0\n- attrs>=21.4.0\n- beartype>=0.10.0\n- ordered_set>=4.0.2\n- statsmodels>=0.12.2\n- diptest>=0.4.2\n- typing_extensions>=4.2.0\n\n### User install in a Conda environment (recommended)\nCreate a conda environment named ``myscludamenv`` with python3.8 and ``scludam`` installed\n```\nconda create --name myscludamenv python=3.8 pip --yes\nconda activate myscludamenv\npython -m pip install scludam\n```\n\n### Update scludam in a Conda environment\n```\nconda activate myscludamenv\npython -m pip install -U scludam\npython -m pip show scludam\n```\n\n### Simple user install\nInstall from PyPi:\n```python -m pip install scludam```\n\n### Simple user update\nUpdate from PyPi:\n```python -m pip install -U scludam```\n\n### Dev install\nClone the repo and run the following command in the cloned directory (with your environment activated):\n```python -m pip install -e .[dev]```\n",
"bugtrack_url": null,
"license": "GPL-3",
"summary": "Star cluster detection and membership estimation based on GAIA data.",
"version": "1.0.8",
"project_urls": {
"Homepage": "http://packages.python.org/scludam"
},
"split_keywords": [
"star",
"cluster",
"detection",
"membership",
"probabilities"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1bd3847c4b626fa70b62a573608508dc4ab9518ebed6dd2b83927c3569fa60c2",
"md5": "e931757e6c3fb79b47a430c490d7baa0",
"sha256": "e3b4fba9c3b391326f0f44138b35b1662c4df9653753740e43da9e6c1ff40a11"
},
"downloads": -1,
"filename": "scludam-1.0.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e931757e6c3fb79b47a430c490d7baa0",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 125568,
"upload_time": "2024-04-24T01:26:26",
"upload_time_iso_8601": "2024-04-24T01:26:26.647860Z",
"url": "https://files.pythonhosted.org/packages/1b/d3/847c4b626fa70b62a573608508dc4ab9518ebed6dd2b83927c3569fa60c2/scludam-1.0.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-24 01:26:26",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "scludam"
}