我家还蛮大的, 欢迎你们来我家van.
https://github.com/skykiseki
score_card_model
====
"风险评分卡模型开发"
基于最早的FICO风险评分卡逻辑进行优化
当前包含主干部分, 即特征分箱、IV值计算、Woe转化、模型评估指标等。
不包含建模的部分, 这个问题留给用户。
特征的分箱使用的方法是卡方分箱, 整个流程为:
整理特征类型(离散、连续) -> 初始化分箱 -> 卡方合并 -> 单调性检验 -> 特殊值处理
完整文档见 ``README.md``
GitHub: https://github.com/skykiseki/score_card_model
Raw data
{
"_id": null,
"home_page": "https://github.com/skykiseki/score_card_model",
"name": "score-card-model",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "Risk Score Card",
"author": "Wei, Zhihui",
"author_email": "evelinesdd@qq.com",
"download_url": "https://files.pythonhosted.org/packages/35/29/85e250d7a6d784b0e399d01e120006b429f889fba08360bc865b7513cf89/score-card-model-1.6.8.tar.gz",
"platform": null,
"description": "\n\u6211\u5bb6\u8fd8\u86ee\u5927\u7684, \u6b22\u8fce\u4f60\u4eec\u6765\u6211\u5bb6van.\n\nhttps://github.com/skykiseki\n\nscore_card_model\n====\n\n \"\u98ce\u9669\u8bc4\u5206\u5361\u6a21\u578b\u5f00\u53d1\" \n \u57fa\u4e8e\u6700\u65e9\u7684FICO\u98ce\u9669\u8bc4\u5206\u5361\u903b\u8f91\u8fdb\u884c\u4f18\u5316\n\n \u5f53\u524d\u5305\u542b\u4e3b\u5e72\u90e8\u5206, \u5373\u7279\u5f81\u5206\u7bb1\u3001IV\u503c\u8ba1\u7b97\u3001Woe\u8f6c\u5316\u3001\u6a21\u578b\u8bc4\u4f30\u6307\u6807\u7b49\u3002\n \u4e0d\u5305\u542b\u5efa\u6a21\u7684\u90e8\u5206, \u8fd9\u4e2a\u95ee\u9898\u7559\u7ed9\u7528\u6237\u3002\n\n \n \u7279\u5f81\u7684\u5206\u7bb1\u4f7f\u7528\u7684\u65b9\u6cd5\u662f\u5361\u65b9\u5206\u7bb1, \u6574\u4e2a\u6d41\u7a0b\u4e3a:\n \u6574\u7406\u7279\u5f81\u7c7b\u578b(\u79bb\u6563\u3001\u8fde\u7eed) -> \u521d\u59cb\u5316\u5206\u7bb1 -> \u5361\u65b9\u5408\u5e76 -> \u5355\u8c03\u6027\u68c0\u9a8c -> \u7279\u6b8a\u503c\u5904\u7406 \n\n\u5b8c\u6574\u6587\u6863\u89c1 ``README.md``\n\nGitHub: https://github.com/skykiseki/score_card_model\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Risk Score Card Model",
"version": "1.6.8",
"split_keywords": [
"risk",
"score",
"card"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ce610a5e1ccb80ad88b293f16a7eb42194f733d51ebd3f93312e417069e29d59",
"md5": "f37e50e9350c4602b03f0bb67bf08030",
"sha256": "8e124bad85d57307888c5c3d83c7663698e38a8a1c4b678e502818ac2902e602"
},
"downloads": -1,
"filename": "score_card_model-1.6.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f37e50e9350c4602b03f0bb67bf08030",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 33156,
"upload_time": "2023-01-05T12:34:07",
"upload_time_iso_8601": "2023-01-05T12:34:07.075497Z",
"url": "https://files.pythonhosted.org/packages/ce/61/0a5e1ccb80ad88b293f16a7eb42194f733d51ebd3f93312e417069e29d59/score_card_model-1.6.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "352985e250d7a6d784b0e399d01e120006b429f889fba08360bc865b7513cf89",
"md5": "9adfef878a497ed5718d06d4a52fd7ca",
"sha256": "5e759ae9531f71d91a59084823e7111cf581426bf56616d2c09295373851b510"
},
"downloads": -1,
"filename": "score-card-model-1.6.8.tar.gz",
"has_sig": false,
"md5_digest": "9adfef878a497ed5718d06d4a52fd7ca",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 34495,
"upload_time": "2023-01-05T12:34:09",
"upload_time_iso_8601": "2023-01-05T12:34:09.535561Z",
"url": "https://files.pythonhosted.org/packages/35/29/85e250d7a6d784b0e399d01e120006b429f889fba08360bc865b7513cf89/score-card-model-1.6.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-05 12:34:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "skykiseki",
"github_project": "score_card_model",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "score-card-model"
}