scprep


Namescprep JSON
Version 1.2.3 PyPI version JSON
download
home_pagehttps://github.com/KrishnaswamyLab/scprep
Summaryscprep
upload_time2023-06-19 18:18:17
maintainer
docs_urlNone
authorScott Gigante, Daniel Burkhardt and Jay Stanley, Yale University
requires_python>=3.6
licenseGNU General Public License Version 3
keywords big-data computational-biology
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            .. image:: logo.png
    :alt: scprep logo

.. image:: https://img.shields.io/pypi/v/scprep.svg
    :target: https://pypi.org/project/scprep/
    :alt: Latest PyPi version
.. image:: https://anaconda.org/bioconda/scprep/badges/version.svg
    :target: https://anaconda.org/bioconda/scprep/
    :alt: Latest Conda version
.. image:: https://api.travis-ci.com/KrishnaswamyLab/scprep.svg?branch=master
    :target: https://travis-ci.com/KrishnaswamyLab/scprep
    :alt: Travis CI Build
.. image:: https://img.shields.io/readthedocs/scprep.svg
    :target: https://scprep.readthedocs.io/
    :alt: Read the Docs
.. image:: https://coveralls.io/repos/github/KrishnaswamyLab/scprep/badge.svg?branch=master
    :target: https://coveralls.io/github/KrishnaswamyLab/scprep?branch=master
    :alt: Coverage Status
.. image:: https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow
    :target: https://twitter.com/KrishnaswamyLab
    :alt: Twitter
.. image:: https://img.shields.io/github/stars/KrishnaswamyLab/scprep.svg?style=social&label=Stars
    :target: https://github.com/KrishnaswamyLab/scprep/
    :alt: GitHub stars
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
    :target: https://github.com/psf/black
    :alt: Code style: black
.. image:: https://img.shields.io/badge/style%20guide-openstack-eb1a32.svg
    :target: https://docs.openstack.org/hacking/latest/user/hacking.html#styleguide
    :alt: Style Guide: OpenStack
.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
    :target: https://github.com/pre-commit/pre-commit
    :alt: pre-commit

`scprep` provides an all-in-one framework for loading, preprocessing, and plotting matrices in Python, with a focus on single-cell genomics.

The philosophy of `scprep`:

* Data shouldn't be hidden in a complex and bespoke class object. `scprep` works with `numpy` arrays, `pandas` data frames, and `scipy` sparse matrices, all of which are popular data formats in Python and accepted as input to most common algorithms.
* Your analysis pipeline shouldn't have to change based on data format. Changing from a `numpy` array to a `pandas` data frame introduces endless technical differences (e.g. in indexing matrices). `scprep` provides data-agnostic methods that work the same way on all formats.
* Simple analysis should mean simple code. `scprep` takes care of annoying edge cases and sets nice defaults so you don't have to.
* Using a framework shouldn't be limiting. Because nothing is hidden from you, you have access to the power of `numpy`, `scipy`, `pandas` and `matplotlib` just as you would if you used them directly.

Installation
------------

preprocessing is available on `pip`. Install by running the following in a terminal::

    pip install --user scprep

Alternatively, scprep can be installed using `Conda <https://conda.io/docs/>`_ (most easily obtained via the `Miniconda Python distribution <https://conda.io/miniconda.html>`_)::

    conda install -c bioconda scprep

Quick Start
-----------

You can use `scprep` with your single cell data as follows::

    import scprep
    # Load data
    data_path = "~/mydata/my_10X_data"
    data = scprep.io.load_10X(data_path)
    # Remove empty columns and rows
    data = scprep.filter.remove_empty_cells(data)
    data = scprep.filter.remove_empty_genes(data)
    # Filter by library size to remove background
    scprep.plot.plot_library_size(data, cutoff=500)
    data = scprep.filter.filter_library_size(data, cutoff=500)
    # Filter by mitochondrial expression to remove dead cells
    mt_genes = scprep.select.get_gene_set(data, starts_with="MT")
    scprep.plot.plot_gene_set_expression(data, genes=mt_genes, percentile=90)
    data = scprep.filter.filter_gene_set_expression(data, genes=mt_genes,
                                                    percentile=90)
    # Library size normalize
    data = scprep.normalize.library_size_normalize(data)
    # Square root transform
    data = scprep.transform.sqrt(data)

Examples
--------

* `Scatter plots <https://scprep.readthedocs.io/en/stable/examples/scatter.html>`_
* `Jitter plots <https://scprep.readthedocs.io/en/stable/examples/jitter.html>`_

Help
----

If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/KrishnaswamyLab/scprep",
    "name": "scprep",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "big-data,computational-biology",
    "author": "Scott Gigante, Daniel Burkhardt and Jay Stanley, Yale University",
    "author_email": "krishnaswamylab@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ba/71/9295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da/scprep-1.2.3.tar.gz",
    "platform": null,
    "description": ".. image:: logo.png\n    :alt: scprep logo\n\n.. image:: https://img.shields.io/pypi/v/scprep.svg\n    :target: https://pypi.org/project/scprep/\n    :alt: Latest PyPi version\n.. image:: https://anaconda.org/bioconda/scprep/badges/version.svg\n    :target: https://anaconda.org/bioconda/scprep/\n    :alt: Latest Conda version\n.. image:: https://api.travis-ci.com/KrishnaswamyLab/scprep.svg?branch=master\n    :target: https://travis-ci.com/KrishnaswamyLab/scprep\n    :alt: Travis CI Build\n.. image:: https://img.shields.io/readthedocs/scprep.svg\n    :target: https://scprep.readthedocs.io/\n    :alt: Read the Docs\n.. image:: https://coveralls.io/repos/github/KrishnaswamyLab/scprep/badge.svg?branch=master\n    :target: https://coveralls.io/github/KrishnaswamyLab/scprep?branch=master\n    :alt: Coverage Status\n.. image:: https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow\n    :target: https://twitter.com/KrishnaswamyLab\n    :alt: Twitter\n.. image:: https://img.shields.io/github/stars/KrishnaswamyLab/scprep.svg?style=social&label=Stars\n    :target: https://github.com/KrishnaswamyLab/scprep/\n    :alt: GitHub stars\n.. image:: https://img.shields.io/badge/code%20style-black-000000.svg\n    :target: https://github.com/psf/black\n    :alt: Code style: black\n.. image:: https://img.shields.io/badge/style%20guide-openstack-eb1a32.svg\n    :target: https://docs.openstack.org/hacking/latest/user/hacking.html#styleguide\n    :alt: Style Guide: OpenStack\n.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white\n    :target: https://github.com/pre-commit/pre-commit\n    :alt: pre-commit\n\n`scprep` provides an all-in-one framework for loading, preprocessing, and plotting matrices in Python, with a focus on single-cell genomics.\n\nThe philosophy of `scprep`:\n\n* Data shouldn't be hidden in a complex and bespoke class object. `scprep` works with `numpy` arrays, `pandas` data frames, and `scipy` sparse matrices, all of which are popular data formats in Python and accepted as input to most common algorithms.\n* Your analysis pipeline shouldn't have to change based on data format. Changing from a `numpy` array to a `pandas` data frame introduces endless technical differences (e.g. in indexing matrices). `scprep` provides data-agnostic methods that work the same way on all formats.\n* Simple analysis should mean simple code. `scprep` takes care of annoying edge cases and sets nice defaults so you don't have to.\n* Using a framework shouldn't be limiting. Because nothing is hidden from you, you have access to the power of `numpy`, `scipy`, `pandas` and `matplotlib` just as you would if you used them directly.\n\nInstallation\n------------\n\npreprocessing is available on `pip`. Install by running the following in a terminal::\n\n    pip install --user scprep\n\nAlternatively, scprep can be installed using `Conda <https://conda.io/docs/>`_ (most easily obtained via the `Miniconda Python distribution <https://conda.io/miniconda.html>`_)::\n\n    conda install -c bioconda scprep\n\nQuick Start\n-----------\n\nYou can use `scprep` with your single cell data as follows::\n\n    import scprep\n    # Load data\n    data_path = \"~/mydata/my_10X_data\"\n    data = scprep.io.load_10X(data_path)\n    # Remove empty columns and rows\n    data = scprep.filter.remove_empty_cells(data)\n    data = scprep.filter.remove_empty_genes(data)\n    # Filter by library size to remove background\n    scprep.plot.plot_library_size(data, cutoff=500)\n    data = scprep.filter.filter_library_size(data, cutoff=500)\n    # Filter by mitochondrial expression to remove dead cells\n    mt_genes = scprep.select.get_gene_set(data, starts_with=\"MT\")\n    scprep.plot.plot_gene_set_expression(data, genes=mt_genes, percentile=90)\n    data = scprep.filter.filter_gene_set_expression(data, genes=mt_genes,\n                                                    percentile=90)\n    # Library size normalize\n    data = scprep.normalize.library_size_normalize(data)\n    # Square root transform\n    data = scprep.transform.sqrt(data)\n\nExamples\n--------\n\n* `Scatter plots <https://scprep.readthedocs.io/en/stable/examples/scatter.html>`_\n* `Jitter plots <https://scprep.readthedocs.io/en/stable/examples/jitter.html>`_\n\nHelp\n----\n\nIf you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help\n",
    "bugtrack_url": null,
    "license": "GNU General Public License Version 3",
    "summary": "scprep",
    "version": "1.2.3",
    "project_urls": {
        "Download": "https://github.com/KrishnaswamyLab/scprep/archive/v1.2.3.tar.gz",
        "Homepage": "https://github.com/KrishnaswamyLab/scprep"
    },
    "split_keywords": [
        "big-data",
        "computational-biology"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2ad272a06c97668b07ef703ffdc392cbd5ce004733d14978f6ae2ae71a09df41",
                "md5": "bb53cc2c173db4265b15c62270029d0e",
                "sha256": "31c75956baee3fc7a079957ce4e01821b36012163bd9d34e48afc74b42b5d875"
            },
            "downloads": -1,
            "filename": "scprep-1.2.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bb53cc2c173db4265b15c62270029d0e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 94085,
            "upload_time": "2023-06-19T18:18:15",
            "upload_time_iso_8601": "2023-06-19T18:18:15.915091Z",
            "url": "https://files.pythonhosted.org/packages/2a/d2/72a06c97668b07ef703ffdc392cbd5ce004733d14978f6ae2ae71a09df41/scprep-1.2.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ba719295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da",
                "md5": "52d596fa3c715dcd2f8962a372a738e3",
                "sha256": "cc4ba4cedbba256935298f2ba6a973b4e74ea8cb9ad2632b693b6d4e6ab77c3f"
            },
            "downloads": -1,
            "filename": "scprep-1.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "52d596fa3c715dcd2f8962a372a738e3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 107981,
            "upload_time": "2023-06-19T18:18:17",
            "upload_time_iso_8601": "2023-06-19T18:18:17.687617Z",
            "url": "https://files.pythonhosted.org/packages/ba/71/9295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da/scprep-1.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-19 18:18:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "KrishnaswamyLab",
    "github_project": "scprep",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "scprep"
}
        
Elapsed time: 0.17027s