.. image:: logo.png
:alt: scprep logo
.. image:: https://img.shields.io/pypi/v/scprep.svg
:target: https://pypi.org/project/scprep/
:alt: Latest PyPi version
.. image:: https://anaconda.org/bioconda/scprep/badges/version.svg
:target: https://anaconda.org/bioconda/scprep/
:alt: Latest Conda version
.. image:: https://api.travis-ci.com/KrishnaswamyLab/scprep.svg?branch=master
:target: https://travis-ci.com/KrishnaswamyLab/scprep
:alt: Travis CI Build
.. image:: https://img.shields.io/readthedocs/scprep.svg
:target: https://scprep.readthedocs.io/
:alt: Read the Docs
.. image:: https://coveralls.io/repos/github/KrishnaswamyLab/scprep/badge.svg?branch=master
:target: https://coveralls.io/github/KrishnaswamyLab/scprep?branch=master
:alt: Coverage Status
.. image:: https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow
:target: https://twitter.com/KrishnaswamyLab
:alt: Twitter
.. image:: https://img.shields.io/github/stars/KrishnaswamyLab/scprep.svg?style=social&label=Stars
:target: https://github.com/KrishnaswamyLab/scprep/
:alt: GitHub stars
.. image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
:alt: Code style: black
.. image:: https://img.shields.io/badge/style%20guide-openstack-eb1a32.svg
:target: https://docs.openstack.org/hacking/latest/user/hacking.html#styleguide
:alt: Style Guide: OpenStack
.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
:target: https://github.com/pre-commit/pre-commit
:alt: pre-commit
`scprep` provides an all-in-one framework for loading, preprocessing, and plotting matrices in Python, with a focus on single-cell genomics.
The philosophy of `scprep`:
* Data shouldn't be hidden in a complex and bespoke class object. `scprep` works with `numpy` arrays, `pandas` data frames, and `scipy` sparse matrices, all of which are popular data formats in Python and accepted as input to most common algorithms.
* Your analysis pipeline shouldn't have to change based on data format. Changing from a `numpy` array to a `pandas` data frame introduces endless technical differences (e.g. in indexing matrices). `scprep` provides data-agnostic methods that work the same way on all formats.
* Simple analysis should mean simple code. `scprep` takes care of annoying edge cases and sets nice defaults so you don't have to.
* Using a framework shouldn't be limiting. Because nothing is hidden from you, you have access to the power of `numpy`, `scipy`, `pandas` and `matplotlib` just as you would if you used them directly.
Installation
------------
preprocessing is available on `pip`. Install by running the following in a terminal::
pip install --user scprep
Alternatively, scprep can be installed using `Conda <https://conda.io/docs/>`_ (most easily obtained via the `Miniconda Python distribution <https://conda.io/miniconda.html>`_)::
conda install -c bioconda scprep
Quick Start
-----------
You can use `scprep` with your single cell data as follows::
import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.select.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, genes=mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, genes=mt_genes,
percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)
Examples
--------
* `Scatter plots <https://scprep.readthedocs.io/en/stable/examples/scatter.html>`_
* `Jitter plots <https://scprep.readthedocs.io/en/stable/examples/jitter.html>`_
Help
----
If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help
Raw data
{
"_id": null,
"home_page": "https://github.com/KrishnaswamyLab/scprep",
"name": "scprep",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "big-data,computational-biology",
"author": "Scott Gigante, Daniel Burkhardt and Jay Stanley, Yale University",
"author_email": "krishnaswamylab@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ba/71/9295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da/scprep-1.2.3.tar.gz",
"platform": null,
"description": ".. image:: logo.png\n :alt: scprep logo\n\n.. image:: https://img.shields.io/pypi/v/scprep.svg\n :target: https://pypi.org/project/scprep/\n :alt: Latest PyPi version\n.. image:: https://anaconda.org/bioconda/scprep/badges/version.svg\n :target: https://anaconda.org/bioconda/scprep/\n :alt: Latest Conda version\n.. image:: https://api.travis-ci.com/KrishnaswamyLab/scprep.svg?branch=master\n :target: https://travis-ci.com/KrishnaswamyLab/scprep\n :alt: Travis CI Build\n.. image:: https://img.shields.io/readthedocs/scprep.svg\n :target: https://scprep.readthedocs.io/\n :alt: Read the Docs\n.. image:: https://coveralls.io/repos/github/KrishnaswamyLab/scprep/badge.svg?branch=master\n :target: https://coveralls.io/github/KrishnaswamyLab/scprep?branch=master\n :alt: Coverage Status\n.. image:: https://img.shields.io/twitter/follow/KrishnaswamyLab.svg?style=social&label=Follow\n :target: https://twitter.com/KrishnaswamyLab\n :alt: Twitter\n.. image:: https://img.shields.io/github/stars/KrishnaswamyLab/scprep.svg?style=social&label=Stars\n :target: https://github.com/KrishnaswamyLab/scprep/\n :alt: GitHub stars\n.. image:: https://img.shields.io/badge/code%20style-black-000000.svg\n :target: https://github.com/psf/black\n :alt: Code style: black\n.. image:: https://img.shields.io/badge/style%20guide-openstack-eb1a32.svg\n :target: https://docs.openstack.org/hacking/latest/user/hacking.html#styleguide\n :alt: Style Guide: OpenStack\n.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white\n :target: https://github.com/pre-commit/pre-commit\n :alt: pre-commit\n\n`scprep` provides an all-in-one framework for loading, preprocessing, and plotting matrices in Python, with a focus on single-cell genomics.\n\nThe philosophy of `scprep`:\n\n* Data shouldn't be hidden in a complex and bespoke class object. `scprep` works with `numpy` arrays, `pandas` data frames, and `scipy` sparse matrices, all of which are popular data formats in Python and accepted as input to most common algorithms.\n* Your analysis pipeline shouldn't have to change based on data format. Changing from a `numpy` array to a `pandas` data frame introduces endless technical differences (e.g. in indexing matrices). `scprep` provides data-agnostic methods that work the same way on all formats.\n* Simple analysis should mean simple code. `scprep` takes care of annoying edge cases and sets nice defaults so you don't have to.\n* Using a framework shouldn't be limiting. Because nothing is hidden from you, you have access to the power of `numpy`, `scipy`, `pandas` and `matplotlib` just as you would if you used them directly.\n\nInstallation\n------------\n\npreprocessing is available on `pip`. Install by running the following in a terminal::\n\n pip install --user scprep\n\nAlternatively, scprep can be installed using `Conda <https://conda.io/docs/>`_ (most easily obtained via the `Miniconda Python distribution <https://conda.io/miniconda.html>`_)::\n\n conda install -c bioconda scprep\n\nQuick Start\n-----------\n\nYou can use `scprep` with your single cell data as follows::\n\n import scprep\n # Load data\n data_path = \"~/mydata/my_10X_data\"\n data = scprep.io.load_10X(data_path)\n # Remove empty columns and rows\n data = scprep.filter.remove_empty_cells(data)\n data = scprep.filter.remove_empty_genes(data)\n # Filter by library size to remove background\n scprep.plot.plot_library_size(data, cutoff=500)\n data = scprep.filter.filter_library_size(data, cutoff=500)\n # Filter by mitochondrial expression to remove dead cells\n mt_genes = scprep.select.get_gene_set(data, starts_with=\"MT\")\n scprep.plot.plot_gene_set_expression(data, genes=mt_genes, percentile=90)\n data = scprep.filter.filter_gene_set_expression(data, genes=mt_genes,\n percentile=90)\n # Library size normalize\n data = scprep.normalize.library_size_normalize(data)\n # Square root transform\n data = scprep.transform.sqrt(data)\n\nExamples\n--------\n\n* `Scatter plots <https://scprep.readthedocs.io/en/stable/examples/scatter.html>`_\n* `Jitter plots <https://scprep.readthedocs.io/en/stable/examples/jitter.html>`_\n\nHelp\n----\n\nIf you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help\n",
"bugtrack_url": null,
"license": "GNU General Public License Version 3",
"summary": "scprep",
"version": "1.2.3",
"project_urls": {
"Download": "https://github.com/KrishnaswamyLab/scprep/archive/v1.2.3.tar.gz",
"Homepage": "https://github.com/KrishnaswamyLab/scprep"
},
"split_keywords": [
"big-data",
"computational-biology"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2ad272a06c97668b07ef703ffdc392cbd5ce004733d14978f6ae2ae71a09df41",
"md5": "bb53cc2c173db4265b15c62270029d0e",
"sha256": "31c75956baee3fc7a079957ce4e01821b36012163bd9d34e48afc74b42b5d875"
},
"downloads": -1,
"filename": "scprep-1.2.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "bb53cc2c173db4265b15c62270029d0e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 94085,
"upload_time": "2023-06-19T18:18:15",
"upload_time_iso_8601": "2023-06-19T18:18:15.915091Z",
"url": "https://files.pythonhosted.org/packages/2a/d2/72a06c97668b07ef703ffdc392cbd5ce004733d14978f6ae2ae71a09df41/scprep-1.2.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ba719295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da",
"md5": "52d596fa3c715dcd2f8962a372a738e3",
"sha256": "cc4ba4cedbba256935298f2ba6a973b4e74ea8cb9ad2632b693b6d4e6ab77c3f"
},
"downloads": -1,
"filename": "scprep-1.2.3.tar.gz",
"has_sig": false,
"md5_digest": "52d596fa3c715dcd2f8962a372a738e3",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 107981,
"upload_time": "2023-06-19T18:18:17",
"upload_time_iso_8601": "2023-06-19T18:18:17.687617Z",
"url": "https://files.pythonhosted.org/packages/ba/71/9295d94b62bad558c8a7f48e8dc2a3621424cdacf28359ca4693af1032da/scprep-1.2.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-19 18:18:17",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "KrishnaswamyLab",
"github_project": "scprep",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "scprep"
}