scquill


Namescquill JSON
Version 0.3.2 PyPI version JSON
download
home_pageNone
SummaryApproximate any single cell data set, saving >99% of memory and runtime.
upload_time2024-10-22 02:28:15
maintainerNone
docs_urlNone
authorFabio Zanini
requires_python<3.13,>=3.11
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://badge.fury.io/py/scquill.svg)](https://badge.fury.io/py/scquill)

<img src="https://raw.githubusercontent.com/fabilab/scquill/main/logo.png" width="150" height="150">

# scquill
Approximate any single cell data set, saving >99% of memory and runtime.

It's pronounced /ˈskwɪɹl̩//, like the [animal](https://en.wiktionary.org/wiki/squirrel).


## Approximating a single cell data set
```python
import scquill

q = scquill.Compressor(
    filename='myscdata.h5ad',
    output_filename='myapprox.h5',
    celltype_column="cell_annotation",
)

q()
```

## Exploring an approximation
To load an approximation:
```
import scquill

app = scquill.Approximation(
    filename='myapprox.h5',
)
```

To show a dot plot:
```
scquill.pl.dotplot(app, ['gene1', 'gene2', 'gene3'])
```
<img src="https://raw.githubusercontent.com/fabilab/scquill/main/dotplot.png" width="200">


To show a neighborhood plot:
```
scquill.pl.neighborhoodplot(app, ['gene1', 'gene2', 'gene3'])
```
<img src="https://raw.githubusercontent.com/fabilab/scquill/main/neighborhoodplot.png" width="350">

To show embeddings of cell neighborhoods, similar to single-cell UMAPs:

```
scquill.pl.embedding(app, ['gene1', 'gene2', 'gene3'])
```
<img src="https://raw.githubusercontent.com/fabilab/scquill/main/embeddings.png" width="750">

**MORE TO COME**

## Authors
Fabio Zanini @[fabilab](https://fabilab.org)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "scquill",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.11",
    "maintainer_email": null,
    "keywords": null,
    "author": "Fabio Zanini",
    "author_email": "fabio.zanini@unsw.edu.au",
    "download_url": "https://files.pythonhosted.org/packages/4f/e2/d4cd0baf39e2c6a1df2743014ad0c0b0368ac910206c896bddb263a42e3f/scquill-0.3.2.tar.gz",
    "platform": null,
    "description": "[![PyPI version](https://badge.fury.io/py/scquill.svg)](https://badge.fury.io/py/scquill)\n\n<img src=\"https://raw.githubusercontent.com/fabilab/scquill/main/logo.png\" width=\"150\" height=\"150\">\n\n# scquill\nApproximate any single cell data set, saving >99% of memory and runtime.\n\nIt's pronounced /\u02c8skw\u026a\u0279l\u0329//, like the [animal](https://en.wiktionary.org/wiki/squirrel).\n\n\n## Approximating a single cell data set\n```python\nimport scquill\n\nq = scquill.Compressor(\n    filename='myscdata.h5ad',\n    output_filename='myapprox.h5',\n    celltype_column=\"cell_annotation\",\n)\n\nq()\n```\n\n## Exploring an approximation\nTo load an approximation:\n```\nimport scquill\n\napp = scquill.Approximation(\n    filename='myapprox.h5',\n)\n```\n\nTo show a dot plot:\n```\nscquill.pl.dotplot(app, ['gene1', 'gene2', 'gene3'])\n```\n<img src=\"https://raw.githubusercontent.com/fabilab/scquill/main/dotplot.png\" width=\"200\">\n\n\nTo show a neighborhood plot:\n```\nscquill.pl.neighborhoodplot(app, ['gene1', 'gene2', 'gene3'])\n```\n<img src=\"https://raw.githubusercontent.com/fabilab/scquill/main/neighborhoodplot.png\" width=\"350\">\n\nTo show embeddings of cell neighborhoods, similar to single-cell UMAPs:\n\n```\nscquill.pl.embedding(app, ['gene1', 'gene2', 'gene3'])\n```\n<img src=\"https://raw.githubusercontent.com/fabilab/scquill/main/embeddings.png\" width=\"750\">\n\n**MORE TO COME**\n\n## Authors\nFabio Zanini @[fabilab](https://fabilab.org)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Approximate any single cell data set, saving >99% of memory and runtime.",
    "version": "0.3.2",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "921918354d299523c86c633618127f961cf8add240aaad06eb28be7cb2c33e1e",
                "md5": "850e683dfd8525cda8053ced88f1e4fa",
                "sha256": "ce310266fe7bc80460faaa48b3cecf2ad2a67979366f8703c6b444022c99a52e"
            },
            "downloads": -1,
            "filename": "scquill-0.3.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "850e683dfd8525cda8053ced88f1e4fa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.11",
            "size": 25992,
            "upload_time": "2024-10-22T02:28:13",
            "upload_time_iso_8601": "2024-10-22T02:28:13.384739Z",
            "url": "https://files.pythonhosted.org/packages/92/19/18354d299523c86c633618127f961cf8add240aaad06eb28be7cb2c33e1e/scquill-0.3.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4fe2d4cd0baf39e2c6a1df2743014ad0c0b0368ac910206c896bddb263a42e3f",
                "md5": "f7da46ad1e811f473d4b3fda1e4254e7",
                "sha256": "b4212a2be9a39c84a64bd4dbdc53ac492acd0c2f839f7c4333ae90f52b67237b"
            },
            "downloads": -1,
            "filename": "scquill-0.3.2.tar.gz",
            "has_sig": false,
            "md5_digest": "f7da46ad1e811f473d4b3fda1e4254e7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.13,>=3.11",
            "size": 19613,
            "upload_time": "2024-10-22T02:28:15",
            "upload_time_iso_8601": "2024-10-22T02:28:15.373512Z",
            "url": "https://files.pythonhosted.org/packages/4f/e2/d4cd0baf39e2c6a1df2743014ad0c0b0368ac910206c896bddb263a42e3f/scquill-0.3.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-22 02:28:15",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "scquill"
}
        
Elapsed time: 0.47350s