scrapfly-sdk


Namescrapfly-sdk JSON
Version 0.8.19 PyPI version JSON
download
home_pagehttps://github.com/scrapfly/python-sdk
SummaryScrapfly SDK for Scrapfly
upload_time2024-11-08 14:22:35
maintainerNone
docs_urlNone
authorScrapfly
requires_python>=3.6
licenseBSD
keywords scraping web scraping data extraction scrapfly sdk cloud scrapy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Scrapfly SDK

## Installation

`pip install scrapfly-sdk`

You can also install extra dependencies

* `pip install "scrapfly-sdk[seepdup]"` for performance improvement
* `pip install "scrapfly-sdk[concurrency]"` for concurrency out of the box (asyncio / thread)
* `pip install "scrapfly-sdk[scrapy]"` for scrapy integration
* `pip install "scrapfly-sdk[all]"` Everything!

For use of built-in HTML parser (via `ScrapeApiResponse.selector` property) additional requirement of either [parsel](https://pypi.org/project/parsel/) or [scrapy](https://pypi.org/project/Scrapy/) is required.

For reference of usage or examples, please checkout the folder `/examples` in this repository.

This SDK cover the following Scrapfly API endpoints:

* [Web Scraping API](https://scrapfly.io/docs/onboarding#web-scraping-api)
* [Extraction API](https://scrapfly.io/docs/onboarding#extraction-api)
* [Screenshot API](https://scrapfly.io/docs/onboarding#screenshot-api)

## Integrations  

Scrapfly Python SDKs are integrated with [LlamaIndex](https://www.llamaindex.ai/) and [LangChain](https://www.langchain.com/). Both framework allows training Large Language Models (LLMs) using augmented context.

This augmented context is approached by training LLMs on top of private or domain-specific data for common use cases:
- Question-Answering Chatbots (commonly referred to as RAG systems, which stands for "Retrieval-Augmented Generation")
- Document Understanding and Extraction
- Autonomous Agents that can perform research and take actions
<br>  

In the context of web scraping, web page data can be extracted as Text or Markdown using [Scrapfly's format feature](https://scrapfly.io/docs/scrape-api/specification#api_param_format) to train LLMs with the scraped data.

### LlamaIndex

#### Installation
Install `llama-index`, `llama-index-readers-web`, and `scrapfly-sdk` using pip:
```shell
pip install llama-index llama-index-readers-web scrapfly-sdk
```

#### Usage
Scrapfly is available at LlamaIndex as a [data connector](https://docs.llamaindex.ai/en/stable/module_guides/loading/connector/), known as a `Reader`. This reader is used to gather a web page data into a `Document` representation, which can be used with the LLM directly. Below is an example of building a RAG system using LlamaIndex and scraped data. See the [LlamaIndex use cases](https://docs.llamaindex.ai/en/stable/use_cases/) for more.
```python
import os

from llama_index.readers.web import ScrapflyReader
from llama_index.core import VectorStoreIndex

# Initiate ScrapflyReader with your Scrapfly API key
scrapfly_reader = ScrapflyReader(
    api_key="Your Scrapfly API key",  # Get your API key from https://www.scrapfly.io/
    ignore_scrape_failures=True,  # Ignore unprocessable web pages and log their exceptions
)

# Load documents from URLs as markdown
documents = scrapfly_reader.load_data(
    urls=["https://web-scraping.dev/products"]
)

# After creating the documents, train them with an LLM
# LlamaIndex uses OpenAI default, other options can be found at the examples direcotry: 
# https://docs.llamaindex.ai/en/stable/examples/llm/openai/

# Add your OpenAI key (a paid subscription must exist) from: https://platform.openai.com/api-keys/
os.environ['OPENAI_API_KEY'] = "Your OpenAI Key"
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

response = query_engine.query("What is the flavor of the dark energy potion?")
print(response)
"The flavor of the dark energy potion is bold cherry cola."
```

The `load_data` function accepts a ScrapeConfig object to use the desired Scrapfly API parameters:
```python
from llama_index.readers.web import ScrapflyReader

# Initiate ScrapflyReader with your ScrapFly API key
scrapfly_reader = ScrapflyReader(
    api_key="Your Scrapfly API key",  # Get your API key from https://www.scrapfly.io/
    ignore_scrape_failures=True,  # Ignore unprocessable web pages and log their exceptions
)

scrapfly_scrape_config = {
    "asp": True,  # Bypass scraping blocking and antibot solutions, like Cloudflare
    "render_js": True,  # Enable JavaScript rendering with a cloud headless browser
    "proxy_pool": "public_residential_pool",  # Select a proxy pool (datacenter or residnetial)
    "country": "us",  # Select a proxy location
    "auto_scroll": True,  # Auto scroll the page
    "js": "",  # Execute custom JavaScript code by the headless browser
}

# Load documents from URLs as markdown
documents = scrapfly_reader.load_data(
    urls=["https://web-scraping.dev/products"],
    scrape_config=scrapfly_scrape_config,  # Pass the scrape config
    scrape_format="markdown",  # The scrape result format, either `markdown`(default) or `text`
)
```

### LangChain

#### Installation
Install `langchain`, `langchain-community`, and `scrapfly-sdk` using pip:
```shell
pip install langchain langchain-community scrapfly-sdk
```

#### Usage
Scrapfly is available at LangChain as a [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders), known as a `Loader`. This reader is used to gather a web page data into `Document` representation, which canbe used with the LLM after a few operations. Below is an example of building a RAG system with LangChain using scraped data, see [LangChain tutorials](https://python.langchain.com/v0.2/docs/tutorials/) for further use cases.
```python
import os

from langchain import hub # pip install langchainhub
from langchain_chroma import Chroma # pip install langchain_chroma
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_openai import OpenAIEmbeddings, ChatOpenAI # pip install langchain_openai
from langchain_text_splitters import RecursiveCharacterTextSplitter # pip install langchain_text_splitters
from langchain_community.document_loaders import ScrapflyLoader


scrapfly_loader = ScrapflyLoader(
    ["https://web-scraping.dev/products"],
    api_key="Your Scrapfly API key",  # Get your API key from https://www.scrapfly.io/
    continue_on_failure=True,  # Ignore unprocessable web pages and log their exceptions
)

# Load documents from URLs as markdown
documents = scrapfly_loader.load()

# This example uses OpenAI. For more see: https://python.langchain.com/v0.2/docs/integrations/platforms/
os.environ["OPENAI_API_KEY"] = "Your OpenAI key"

# Create a retriever
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(documents)
vectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())
retriever = vectorstore.as_retriever()

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

model = ChatOpenAI()
prompt = hub.pull("rlm/rag-prompt")

rag_chain = (
    {"context": retriever | format_docs, "question": RunnablePassthrough()}
    | prompt
    | model
    | StrOutputParser()
)

response = rag_chain.invoke("What is the flavor of the dark energy potion?")
print(response)
"The flavor of the Dark Energy Potion is bold cherry cola."
```

To use the full Scrapfly features with LangChain, pass a ScrapeConfig object to the `ScrapflyLoader`:
```python
from langchain_community.document_loaders import ScrapflyLoader

scrapfly_scrape_config = {
    "asp": True,  # Bypass scraping blocking and antibot solutions, like Cloudflare
    "render_js": True,  # Enable JavaScript rendering with a cloud headless browser
    "proxy_pool": "public_residential_pool",  # Select a proxy pool (datacenter or residnetial)
    "country": "us",  # Select a proxy location
    "auto_scroll": True,  # Auto scroll the page
    "js": "",  # Execute custom JavaScript code by the headless browser
}

scrapfly_loader = ScrapflyLoader(
    ["https://web-scraping.dev/products"],
    api_key="Your Scrapfly API key",  # Get your API key from https://www.scrapfly.io/
    continue_on_failure=True,  # Ignore unprocessable web pages and log their exceptions
    scrape_config=scrapfly_scrape_config,  # Pass the scrape_config object
    scrape_format="markdown",  # The scrape result format, either `markdown`(default) or `text`
)

# Load documents from URLs as markdown
documents = scrapfly_loader.load()
print(documents)
```
## Get Your API Key

You can create a free account on [Scrapfly](https://scrapfly.io/register) to get your API Key.

* [Usage](https://scrapfly.io/docs/sdk/python)
* [Python API](https://scrapfly.github.io/python-scrapfly/scrapfly)
* [Open API 3 Spec](https://scrapfly.io/docs/openapi#get-/scrape) 
* [Scrapy Integration](https://scrapfly.io/docs/sdk/scrapy)

## Migration

### Migrate from 0.7.x to 0.8

asyncio-pool dependency has been dropped

`scrapfly.concurrent_scrape` is now an async generator. If the concurrency is `None` or not defined, the max concurrency allowed by
your current subscription is used.

```python
    async for result in scrapfly.concurrent_scrape(concurrency=10, scrape_configs=[ScrapConfig(...), ...]):
        print(result)
```

brotli args is deprecated and will be removed in the next minor. There is not benefit in most of case
versus gzip regarding and size and use more CPU.

### What's new

### 0.8.x

* Better error log
* Async/Improvement for concurrent scrape with asyncio
* Scrapy media pipeline are now supported out of the box

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/scrapfly/python-sdk",
    "name": "scrapfly-sdk",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "scraping, web scraping, data, extraction, scrapfly, sdk, cloud, scrapy",
    "author": "Scrapfly",
    "author_email": "tech@scrapfly.io",
    "download_url": "https://files.pythonhosted.org/packages/14/47/095d5c01a6e4f605d73c09289f9f630177b53ff5bf0eda02ac3bfae90c0e/scrapfly-sdk-0.8.19.tar.gz",
    "platform": null,
    "description": "# Scrapfly SDK\n\n## Installation\n\n`pip install scrapfly-sdk`\n\nYou can also install extra dependencies\n\n* `pip install \"scrapfly-sdk[seepdup]\"` for performance improvement\n* `pip install \"scrapfly-sdk[concurrency]\"` for concurrency out of the box (asyncio / thread)\n* `pip install \"scrapfly-sdk[scrapy]\"` for scrapy integration\n* `pip install \"scrapfly-sdk[all]\"` Everything!\n\nFor use of built-in HTML parser (via `ScrapeApiResponse.selector` property) additional requirement of either [parsel](https://pypi.org/project/parsel/) or [scrapy](https://pypi.org/project/Scrapy/) is required.\n\nFor reference of usage or examples, please checkout the folder `/examples` in this repository.\n\nThis SDK cover the following Scrapfly API endpoints:\n\n* [Web Scraping API](https://scrapfly.io/docs/onboarding#web-scraping-api)\n* [Extraction API](https://scrapfly.io/docs/onboarding#extraction-api)\n* [Screenshot API](https://scrapfly.io/docs/onboarding#screenshot-api)\n\n## Integrations  \n\nScrapfly Python SDKs are integrated with [LlamaIndex](https://www.llamaindex.ai/) and [LangChain](https://www.langchain.com/). Both framework allows training Large Language Models (LLMs) using augmented context.\n\nThis augmented context is approached by training LLMs on top of private or domain-specific data for common use cases:\n- Question-Answering Chatbots (commonly referred to as RAG systems, which stands for \"Retrieval-Augmented Generation\")\n- Document Understanding and Extraction\n- Autonomous Agents that can perform research and take actions\n<br>  \n\nIn the context of web scraping, web page data can be extracted as Text or Markdown using [Scrapfly's format feature](https://scrapfly.io/docs/scrape-api/specification#api_param_format) to train LLMs with the scraped data.\n\n### LlamaIndex\n\n#### Installation\nInstall `llama-index`, `llama-index-readers-web`, and `scrapfly-sdk` using pip:\n```shell\npip install llama-index llama-index-readers-web scrapfly-sdk\n```\n\n#### Usage\nScrapfly is available at LlamaIndex as a [data connector](https://docs.llamaindex.ai/en/stable/module_guides/loading/connector/), known as a `Reader`. This reader is used to gather a web page data into a `Document` representation, which can be used with the LLM directly. Below is an example of building a RAG system using LlamaIndex and scraped data. See the [LlamaIndex use cases](https://docs.llamaindex.ai/en/stable/use_cases/) for more.\n```python\nimport os\n\nfrom llama_index.readers.web import ScrapflyReader\nfrom llama_index.core import VectorStoreIndex\n\n# Initiate ScrapflyReader with your Scrapfly API key\nscrapfly_reader = ScrapflyReader(\n    api_key=\"Your Scrapfly API key\",  # Get your API key from https://www.scrapfly.io/\n    ignore_scrape_failures=True,  # Ignore unprocessable web pages and log their exceptions\n)\n\n# Load documents from URLs as markdown\ndocuments = scrapfly_reader.load_data(\n    urls=[\"https://web-scraping.dev/products\"]\n)\n\n# After creating the documents, train them with an LLM\n# LlamaIndex uses OpenAI default, other options can be found at the examples direcotry: \n# https://docs.llamaindex.ai/en/stable/examples/llm/openai/\n\n# Add your OpenAI key (a paid subscription must exist) from: https://platform.openai.com/api-keys/\nos.environ['OPENAI_API_KEY'] = \"Your OpenAI Key\"\nindex = VectorStoreIndex.from_documents(documents)\nquery_engine = index.as_query_engine()\n\nresponse = query_engine.query(\"What is the flavor of the dark energy potion?\")\nprint(response)\n\"The flavor of the dark energy potion is bold cherry cola.\"\n```\n\nThe `load_data` function accepts a ScrapeConfig object to use the desired Scrapfly API parameters:\n```python\nfrom llama_index.readers.web import ScrapflyReader\n\n# Initiate ScrapflyReader with your ScrapFly API key\nscrapfly_reader = ScrapflyReader(\n    api_key=\"Your Scrapfly API key\",  # Get your API key from https://www.scrapfly.io/\n    ignore_scrape_failures=True,  # Ignore unprocessable web pages and log their exceptions\n)\n\nscrapfly_scrape_config = {\n    \"asp\": True,  # Bypass scraping blocking and antibot solutions, like Cloudflare\n    \"render_js\": True,  # Enable JavaScript rendering with a cloud headless browser\n    \"proxy_pool\": \"public_residential_pool\",  # Select a proxy pool (datacenter or residnetial)\n    \"country\": \"us\",  # Select a proxy location\n    \"auto_scroll\": True,  # Auto scroll the page\n    \"js\": \"\",  # Execute custom JavaScript code by the headless browser\n}\n\n# Load documents from URLs as markdown\ndocuments = scrapfly_reader.load_data(\n    urls=[\"https://web-scraping.dev/products\"],\n    scrape_config=scrapfly_scrape_config,  # Pass the scrape config\n    scrape_format=\"markdown\",  # The scrape result format, either `markdown`(default) or `text`\n)\n```\n\n### LangChain\n\n#### Installation\nInstall `langchain`, `langchain-community`, and `scrapfly-sdk` using pip:\n```shell\npip install langchain langchain-community scrapfly-sdk\n```\n\n#### Usage\nScrapfly is available at LangChain as a [document loader](https://python.langchain.com/v0.2/docs/concepts/#document-loaders), known as a `Loader`. This reader is used to gather a web page data into `Document` representation, which canbe used with the LLM after a few operations. Below is an example of building a RAG system with LangChain using scraped data, see [LangChain tutorials](https://python.langchain.com/v0.2/docs/tutorials/) for further use cases.\n```python\nimport os\n\nfrom langchain import hub # pip install langchainhub\nfrom langchain_chroma import Chroma # pip install langchain_chroma\nfrom langchain_core.runnables import RunnablePassthrough\nfrom langchain_core.output_parsers import StrOutputParser\nfrom langchain_openai import OpenAIEmbeddings, ChatOpenAI # pip install langchain_openai\nfrom langchain_text_splitters import RecursiveCharacterTextSplitter # pip install langchain_text_splitters\nfrom langchain_community.document_loaders import ScrapflyLoader\n\n\nscrapfly_loader = ScrapflyLoader(\n    [\"https://web-scraping.dev/products\"],\n    api_key=\"Your Scrapfly API key\",  # Get your API key from https://www.scrapfly.io/\n    continue_on_failure=True,  # Ignore unprocessable web pages and log their exceptions\n)\n\n# Load documents from URLs as markdown\ndocuments = scrapfly_loader.load()\n\n# This example uses OpenAI. For more see: https://python.langchain.com/v0.2/docs/integrations/platforms/\nos.environ[\"OPENAI_API_KEY\"] = \"Your OpenAI key\"\n\n# Create a retriever\ntext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)\nsplits = text_splitter.split_documents(documents)\nvectorstore = Chroma.from_documents(documents=splits, embedding=OpenAIEmbeddings())\nretriever = vectorstore.as_retriever()\n\ndef format_docs(docs):\n    return \"\\n\\n\".join(doc.page_content for doc in docs)\n\nmodel = ChatOpenAI()\nprompt = hub.pull(\"rlm/rag-prompt\")\n\nrag_chain = (\n    {\"context\": retriever | format_docs, \"question\": RunnablePassthrough()}\n    | prompt\n    | model\n    | StrOutputParser()\n)\n\nresponse = rag_chain.invoke(\"What is the flavor of the dark energy potion?\")\nprint(response)\n\"The flavor of the Dark Energy Potion is bold cherry cola.\"\n```\n\nTo use the full Scrapfly features with LangChain, pass a ScrapeConfig object to the `ScrapflyLoader`:\n```python\nfrom langchain_community.document_loaders import ScrapflyLoader\n\nscrapfly_scrape_config = {\n    \"asp\": True,  # Bypass scraping blocking and antibot solutions, like Cloudflare\n    \"render_js\": True,  # Enable JavaScript rendering with a cloud headless browser\n    \"proxy_pool\": \"public_residential_pool\",  # Select a proxy pool (datacenter or residnetial)\n    \"country\": \"us\",  # Select a proxy location\n    \"auto_scroll\": True,  # Auto scroll the page\n    \"js\": \"\",  # Execute custom JavaScript code by the headless browser\n}\n\nscrapfly_loader = ScrapflyLoader(\n    [\"https://web-scraping.dev/products\"],\n    api_key=\"Your Scrapfly API key\",  # Get your API key from https://www.scrapfly.io/\n    continue_on_failure=True,  # Ignore unprocessable web pages and log their exceptions\n    scrape_config=scrapfly_scrape_config,  # Pass the scrape_config object\n    scrape_format=\"markdown\",  # The scrape result format, either `markdown`(default) or `text`\n)\n\n# Load documents from URLs as markdown\ndocuments = scrapfly_loader.load()\nprint(documents)\n```\n## Get Your API Key\n\nYou can create a free account on [Scrapfly](https://scrapfly.io/register) to get your API Key.\n\n* [Usage](https://scrapfly.io/docs/sdk/python)\n* [Python API](https://scrapfly.github.io/python-scrapfly/scrapfly)\n* [Open API 3 Spec](https://scrapfly.io/docs/openapi#get-/scrape) \n* [Scrapy Integration](https://scrapfly.io/docs/sdk/scrapy)\n\n## Migration\n\n### Migrate from 0.7.x to 0.8\n\nasyncio-pool dependency has been dropped\n\n`scrapfly.concurrent_scrape` is now an async generator. If the concurrency is `None` or not defined, the max concurrency allowed by\nyour current subscription is used.\n\n```python\n    async for result in scrapfly.concurrent_scrape(concurrency=10, scrape_configs=[ScrapConfig(...), ...]):\n        print(result)\n```\n\nbrotli args is deprecated and will be removed in the next minor. There is not benefit in most of case\nversus gzip regarding and size and use more CPU.\n\n### What's new\n\n### 0.8.x\n\n* Better error log\n* Async/Improvement for concurrent scrape with asyncio\n* Scrapy media pipeline are now supported out of the box\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "Scrapfly SDK for Scrapfly",
    "version": "0.8.19",
    "project_urls": {
        "Company": "https://scrapfly.io",
        "Documentation": "https://scrapfly.io/docs",
        "Homepage": "https://github.com/scrapfly/python-sdk",
        "Source": "https://github.com/scrapfly/python-sdk"
    },
    "split_keywords": [
        "scraping",
        " web scraping",
        " data",
        " extraction",
        " scrapfly",
        " sdk",
        " cloud",
        " scrapy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "17f42a84419ea000c5c76c88c878ed9b08fe2e24bfa48be085586e144230c631",
                "md5": "7155db5129d9b697d44202752ff8d49f",
                "sha256": "7bb8fa10503a02f2f5981ccb4bd765b910be63a4fb9fd7a1d59c98b72d4ea29c"
            },
            "downloads": -1,
            "filename": "scrapfly_sdk-0.8.19-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7155db5129d9b697d44202752ff8d49f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 40374,
            "upload_time": "2024-11-08T14:22:33",
            "upload_time_iso_8601": "2024-11-08T14:22:33.969683Z",
            "url": "https://files.pythonhosted.org/packages/17/f4/2a84419ea000c5c76c88c878ed9b08fe2e24bfa48be085586e144230c631/scrapfly_sdk-0.8.19-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1447095d5c01a6e4f605d73c09289f9f630177b53ff5bf0eda02ac3bfae90c0e",
                "md5": "54ec48cb12b1f7ee259a0fe8fcc6ef1a",
                "sha256": "fec3f83116a3b0270ce8574abbf166400d7a437101718b5537eef93193b2cf28"
            },
            "downloads": -1,
            "filename": "scrapfly-sdk-0.8.19.tar.gz",
            "has_sig": false,
            "md5_digest": "54ec48cb12b1f7ee259a0fe8fcc6ef1a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 37300,
            "upload_time": "2024-11-08T14:22:35",
            "upload_time_iso_8601": "2024-11-08T14:22:35.911313Z",
            "url": "https://files.pythonhosted.org/packages/14/47/095d5c01a6e4f605d73c09289f9f630177b53ff5bf0eda02ac3bfae90c0e/scrapfly-sdk-0.8.19.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-08 14:22:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "scrapfly",
    "github_project": "python-sdk",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "scrapfly-sdk"
}
        
Elapsed time: 0.35379s