# sdr
<div align=center>
<a href="https://pypi.org/project/sdr"><img src="https://img.shields.io/pypi/v/sdr"></a>
<a href="https://pypi.org/project/sdr"><img src="https://img.shields.io/pypi/pyversions/sdr"></a>
<a href="https://pypi.org/project/sdr"><img src="https://img.shields.io/pypi/wheel/sdr"></a>
<a href="https://pypistats.org/packages/sdr"><img src="https://img.shields.io/pypi/dm/sdr"></a>
<a href="https://pypi.org/project/sdr"><img src="https://img.shields.io/pypi/l/sdr"></a>
</div>
<div align=center>
<a href="https://github.com/mhostetter/sdr/actions/workflows/lint.yaml"><img src="https://github.com/mhostetter/sdr/actions/workflows/lint.yaml/badge.svg?branch=main"></a>
<a href="https://github.com/mhostetter/sdr/actions/workflows/build.yaml"><img src="https://github.com/mhostetter/sdr/actions/workflows/build.yaml/badge.svg?branch=main"></a>
<a href="https://github.com/mhostetter/sdr/actions/workflows/test.yaml"><img src="https://github.com/mhostetter/sdr/actions/workflows/test.yaml/badge.svg?branch=main"></a>
<a href="https://codecov.io/gh/mhostetter/sdr"><img src="https://codecov.io/gh/mhostetter/sdr/branch/main/graph/badge.svg?token=3FJML79ZUK"></a>
<a href="https://twitter.com/sdr_py"><img src="https://img.shields.io/static/v1?label=follow&message=@sdr_py&color=blue&logo=twitter"></a>
</div>
The `sdr` library is a Python 3 package for software-defined radio (SDR).
The goal of `sdr` is to provide tools to design, analyze, build, and test digital communication systems
in Python. The library relies on and is designed to be interoperable with NumPy, SciPy, and Matplotlib.
Performance is also very important. So, where possible, Numba is used to accelerate computationally intensive
functions.
Additionally, the library aims to replicate relevant functionality from MATLAB's Communications and
DSP Toolboxes.
We are progressively adding functionality to the library. If there is something you'd like to see included
in `sdr`, please open an issue on GitHub.
> Enjoying the library? Give us a :star: on [GitHub](https://github.com/mhostetter/sdr)!
## Documentation
The documentation for `sdr` is located at <https://mhostetter.github.io/sdr/latest/>.
## Installation
The latest version of `sdr` can be installed from [PyPI](https://pypi.org/project/sdr/) using `pip`.
```console
python3 -m pip install sdr
```
## Features
View all available classes and functions in the [API Reference](https://mhostetter.github.io/sdr/latest/api/dsp/).
- **Digital signal processing**: Finite impulse response (FIR) filters, FIR filter design,
infinite impulse response (IIR) filters, polyphase interpolators, polyphase decimators, polyphase resamplers,
polyphase channelizers, Farrow arbitrary resamplers, fractional delay FIR filters, FIR moving averagers,
FIR differentiators, IIR integrators, IIR leaky integrators, complex mixing, real/complex conversion.
- **Sequences**: Binary, Gray, Barker, Hadamard, Walsh, Gold, Kasami, Zadoff-Chu, $m$-sequences, preferred pairs,
Fibonacci LFSRs, Galois LFSRs, LFSR synthesis.
- **Coding**: Block interleavers, additive scramblers.
- **Modulation**: Phase-shift keying (PSK), $\pi/M$ PSK, offset QPSK, continuous-phase modulation (CPM),
minimum-shift keying (MSK), rectangular pulse shapes, half-sine pulse shapes, Gaussian pulse shapes,
raised cosine pulse shapes, root raised cosine pulse shapes, differential encoding.
- **Estimation**: TOA, TDOA, FOA, FDOA Cramér-Rao lower bounds.
- **Detection**: Detector probability density functions (PDFs). Theoretical probability of detection, probability of
false alarm, and thresholds. Detection performance approximations. Coherent gain, coherent gain loss (CGL),
and non-coherent gain. Maximum-allowable integration time and frequency offset.
- **Synchronization**: Numerically controlled oscillators (NCO), loop filters, closed-loop phase-locked loop (PLL)
analysis, phase error detectors (PEDs), automatic gain control (AGC).
- **Measurement**: Energy, power, voltage, Euclidean distance, Hamming distance, bit/symbol error rate,
error vector magnitude (EVM), RMS integration time, and RMS bandwidth.
- **Conversions**: Between linear units and decibels. Between $E_b/N_0$, $E_s/N_0$, and $S/N$.
- **Simulation**: Binary symmetric channels (BSC), binary erasure channels (BEC), discrete memoryless channels (DMC).
Apply additive white Gaussian noise (AWGN), frequency offset, sample rate offset, IQ imbalance.
- **Link budgets**: BSC, BEC, AWGN, and BI-AWGN channel capacity, Shannon's limit on $E_b/N_0$ and $S/N$,
free-space path loss, antenna gain.
- **Miscellaneous**: Numerical calculation of PDF of sum and product of random variables. Packing and unpacking binary
data, hexdump of binary data.
- **Plotting**: Time-domain, raster, correlation, stem, discrete Fourier transform (DFT), discrete-time Fourier
transform (DTFT), periodogram, spectrogram, constellation, symbol map, eye diagram, phase tree,
bit error rate (BER), symbol error rate (SER), probability of detection, receiver operating characteristic (ROC),
detection PDFs, impulse response, step response, zeros/poles, magnitude response, phase response,
phase delay, and group delay.
## Examples
There are detailed examples published at <https://mhostetter.github.io/sdr/latest/examples/fir-filters/>.
The Jupyter notebooks behind the examples are available for experimentation in `docs/examples/`.
## Citation
If this library was useful to you in your research, please cite us. Following the
[GitHub citation standards](https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files),
here is the recommended citation.
### BibTeX
```bibtex
@software{Hostetter_SDR_2023,
title = {{sdr: A software-defined radio package for Python}},
author = {Hostetter, Matt},
month = {7},
year = {2023},
url = {https://github.com/mhostetter/sdr},
}
```
### APA
```
Hostetter, M. (2023). sdr: A software-defined radio package for Python [Computer software]. https://github.com/mhostetter/sdr
```
Raw data
{
"_id": null,
"home_page": null,
"name": "sdr",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "software-defined radio, sdr, digital communications, wireless communications, digital signal processing, dsp, modulation, demodulation, modem, forward error correction, numpy",
"author": null,
"author_email": "Matt Hostetter <matthostetter@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/99/6a/e4fcfdb8be763e4ec8c6c41c456145922f567302d5fe769e663323c5d5c4/sdr-0.0.24.tar.gz",
"platform": null,
"description": "# sdr\n\n<div align=center>\n <a href=\"https://pypi.org/project/sdr\"><img src=\"https://img.shields.io/pypi/v/sdr\"></a>\n <a href=\"https://pypi.org/project/sdr\"><img src=\"https://img.shields.io/pypi/pyversions/sdr\"></a>\n <a href=\"https://pypi.org/project/sdr\"><img src=\"https://img.shields.io/pypi/wheel/sdr\"></a>\n <a href=\"https://pypistats.org/packages/sdr\"><img src=\"https://img.shields.io/pypi/dm/sdr\"></a>\n <a href=\"https://pypi.org/project/sdr\"><img src=\"https://img.shields.io/pypi/l/sdr\"></a>\n</div>\n<div align=center>\n <a href=\"https://github.com/mhostetter/sdr/actions/workflows/lint.yaml\"><img src=\"https://github.com/mhostetter/sdr/actions/workflows/lint.yaml/badge.svg?branch=main\"></a>\n <a href=\"https://github.com/mhostetter/sdr/actions/workflows/build.yaml\"><img src=\"https://github.com/mhostetter/sdr/actions/workflows/build.yaml/badge.svg?branch=main\"></a>\n <a href=\"https://github.com/mhostetter/sdr/actions/workflows/test.yaml\"><img src=\"https://github.com/mhostetter/sdr/actions/workflows/test.yaml/badge.svg?branch=main\"></a>\n <a href=\"https://codecov.io/gh/mhostetter/sdr\"><img src=\"https://codecov.io/gh/mhostetter/sdr/branch/main/graph/badge.svg?token=3FJML79ZUK\"></a>\n <a href=\"https://twitter.com/sdr_py\"><img src=\"https://img.shields.io/static/v1?label=follow&message=@sdr_py&color=blue&logo=twitter\"></a>\n</div>\n\nThe `sdr` library is a Python 3 package for software-defined radio (SDR).\n\nThe goal of `sdr` is to provide tools to design, analyze, build, and test digital communication systems\nin Python. The library relies on and is designed to be interoperable with NumPy, SciPy, and Matplotlib.\nPerformance is also very important. So, where possible, Numba is used to accelerate computationally intensive\nfunctions.\n\nAdditionally, the library aims to replicate relevant functionality from MATLAB's Communications and\nDSP Toolboxes.\n\nWe are progressively adding functionality to the library. If there is something you'd like to see included\nin `sdr`, please open an issue on GitHub.\n\n> Enjoying the library? Give us a :star: on [GitHub](https://github.com/mhostetter/sdr)!\n\n## Documentation\n\nThe documentation for `sdr` is located at <https://mhostetter.github.io/sdr/latest/>.\n\n## Installation\n\nThe latest version of `sdr` can be installed from [PyPI](https://pypi.org/project/sdr/) using `pip`.\n\n```console\npython3 -m pip install sdr\n```\n\n## Features\n\nView all available classes and functions in the [API Reference](https://mhostetter.github.io/sdr/latest/api/dsp/).\n\n- **Digital signal processing**: Finite impulse response (FIR) filters, FIR filter design,\n infinite impulse response (IIR) filters, polyphase interpolators, polyphase decimators, polyphase resamplers,\n polyphase channelizers, Farrow arbitrary resamplers, fractional delay FIR filters, FIR moving averagers,\n FIR differentiators, IIR integrators, IIR leaky integrators, complex mixing, real/complex conversion.\n- **Sequences**: Binary, Gray, Barker, Hadamard, Walsh, Gold, Kasami, Zadoff-Chu, $m$-sequences, preferred pairs,\n Fibonacci LFSRs, Galois LFSRs, LFSR synthesis.\n- **Coding**: Block interleavers, additive scramblers.\n- **Modulation**: Phase-shift keying (PSK), $\\pi/M$ PSK, offset QPSK, continuous-phase modulation (CPM),\n minimum-shift keying (MSK), rectangular pulse shapes, half-sine pulse shapes, Gaussian pulse shapes,\n raised cosine pulse shapes, root raised cosine pulse shapes, differential encoding.\n- **Estimation**: TOA, TDOA, FOA, FDOA Cram\u00e9r-Rao lower bounds.\n- **Detection**: Detector probability density functions (PDFs). Theoretical probability of detection, probability of\n false alarm, and thresholds. Detection performance approximations. Coherent gain, coherent gain loss (CGL),\n and non-coherent gain. Maximum-allowable integration time and frequency offset.\n- **Synchronization**: Numerically controlled oscillators (NCO), loop filters, closed-loop phase-locked loop (PLL)\n analysis, phase error detectors (PEDs), automatic gain control (AGC).\n- **Measurement**: Energy, power, voltage, Euclidean distance, Hamming distance, bit/symbol error rate,\n error vector magnitude (EVM), RMS integration time, and RMS bandwidth.\n- **Conversions**: Between linear units and decibels. Between $E_b/N_0$, $E_s/N_0$, and $S/N$.\n- **Simulation**: Binary symmetric channels (BSC), binary erasure channels (BEC), discrete memoryless channels (DMC).\n Apply additive white Gaussian noise (AWGN), frequency offset, sample rate offset, IQ imbalance.\n- **Link budgets**: BSC, BEC, AWGN, and BI-AWGN channel capacity, Shannon's limit on $E_b/N_0$ and $S/N$,\n free-space path loss, antenna gain.\n- **Miscellaneous**: Numerical calculation of PDF of sum and product of random variables. Packing and unpacking binary\n data, hexdump of binary data.\n- **Plotting**: Time-domain, raster, correlation, stem, discrete Fourier transform (DFT), discrete-time Fourier\n transform (DTFT), periodogram, spectrogram, constellation, symbol map, eye diagram, phase tree,\n bit error rate (BER), symbol error rate (SER), probability of detection, receiver operating characteristic (ROC),\n detection PDFs, impulse response, step response, zeros/poles, magnitude response, phase response,\n phase delay, and group delay.\n\n## Examples\n\nThere are detailed examples published at <https://mhostetter.github.io/sdr/latest/examples/fir-filters/>.\nThe Jupyter notebooks behind the examples are available for experimentation in `docs/examples/`.\n\n## Citation\n\nIf this library was useful to you in your research, please cite us. Following the\n[GitHub citation standards](https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/creating-a-repository-on-github/about-citation-files),\nhere is the recommended citation.\n\n### BibTeX\n\n```bibtex\n@software{Hostetter_SDR_2023,\n title = {{sdr: A software-defined radio package for Python}},\n author = {Hostetter, Matt},\n month = {7},\n year = {2023},\n url = {https://github.com/mhostetter/sdr},\n}\n```\n\n### APA\n\n```\nHostetter, M. (2023). sdr: A software-defined radio package for Python [Computer software]. https://github.com/mhostetter/sdr\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package for software-defined radio",
"version": "0.0.24",
"project_urls": {
"Discuss": "https://github.com/mhostetter/sdr/discussions",
"Documentation": "https://mhostetter.github.io/sdr/latest/",
"Homepage": "https://github.com/mhostetter/sdr",
"Issues": "https://github.com/mhostetter/sdr/issues",
"Source": "https://github.com/mhostetter/sdr",
"Twitter": "https://twitter.com/sdr_py"
},
"split_keywords": [
"software-defined radio",
" sdr",
" digital communications",
" wireless communications",
" digital signal processing",
" dsp",
" modulation",
" demodulation",
" modem",
" forward error correction",
" numpy"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "8d8dae35f1704b99cc5c7c1f32cadc34370c23b0e48f87bb6e410a0bc28a4a14",
"md5": "a13b2d348573abe96f74fbb45e569998",
"sha256": "9c9fa4ba23340143e981832abcfe1f59c39527f4370bfe133b331e9db574027d"
},
"downloads": -1,
"filename": "sdr-0.0.24-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a13b2d348573abe96f74fbb45e569998",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 169398,
"upload_time": "2024-09-06T01:04:25",
"upload_time_iso_8601": "2024-09-06T01:04:25.826141Z",
"url": "https://files.pythonhosted.org/packages/8d/8d/ae35f1704b99cc5c7c1f32cadc34370c23b0e48f87bb6e410a0bc28a4a14/sdr-0.0.24-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "996ae4fcfdb8be763e4ec8c6c41c456145922f567302d5fe769e663323c5d5c4",
"md5": "e34ee6b5ecfa4e0f7bc2292fb3d2ed6d",
"sha256": "e66af969cd170a8f70eff0b1ac9aab52d82cce2e88a563f542e2228f6bd103ff"
},
"downloads": -1,
"filename": "sdr-0.0.24.tar.gz",
"has_sig": false,
"md5_digest": "e34ee6b5ecfa4e0f7bc2292fb3d2ed6d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5997633,
"upload_time": "2024-09-06T01:04:28",
"upload_time_iso_8601": "2024-09-06T01:04:28.453811Z",
"url": "https://files.pythonhosted.org/packages/99/6a/e4fcfdb8be763e4ec8c6c41c456145922f567302d5fe769e663323c5d5c4/sdr-0.0.24.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-06 01:04:28",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mhostetter",
"github_project": "sdr",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "sdr"
}