Name | seaborn JSON |
Version |
0.13.2
JSON |
| download |
home_page | None |
Summary | Statistical data visualization |
upload_time | 2024-01-25 13:21:52 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
<img src="https://raw.githubusercontent.com/mwaskom/seaborn/master/doc/_static/logo-wide-lightbg.svg"><br>
--------------------------------------
seaborn: statistical data visualization
=======================================
[![PyPI Version](https://img.shields.io/pypi/v/seaborn.svg)](https://pypi.org/project/seaborn/)
[![License](https://img.shields.io/pypi/l/seaborn.svg)](https://github.com/mwaskom/seaborn/blob/master/LICENSE.md)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.03021/status.svg)](https://doi.org/10.21105/joss.03021)
[![Tests](https://github.com/mwaskom/seaborn/workflows/CI/badge.svg)](https://github.com/mwaskom/seaborn/actions)
[![Code Coverage](https://codecov.io/gh/mwaskom/seaborn/branch/master/graph/badge.svg)](https://codecov.io/gh/mwaskom/seaborn)
Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.
Documentation
-------------
Online documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org).
The docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example gallery](https://seaborn.pydata.org/examples/index.html), [API reference](https://seaborn.pydata.org/api.html), [FAQ](https://seaborn.pydata.org/faq), and other useful information.
To build the documentation locally, please refer to [`doc/README.md`](doc/README.md).
Dependencies
------------
Seaborn supports Python 3.8+.
Installation requires [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), and [matplotlib](https://matplotlib.org/). Some advanced statistical functionality requires [scipy](https://www.scipy.org/) and/or [statsmodels](https://www.statsmodels.org/).
Installation
------------
The latest stable release (and required dependencies) can be installed from PyPI:
pip install seaborn
It is also possible to include optional statistical dependencies:
pip install seaborn[stats]
Seaborn can also be installed with conda:
conda install seaborn
Note that the main anaconda repository lags PyPI in adding new releases, but conda-forge (`-c conda-forge`) typically updates quickly.
Citing
------
A paper describing seaborn has been published in the [Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.03021). The paper provides an introduction to the key features of the library, and it can be used as a citation if seaborn proves integral to a scientific publication.
Testing
-------
Testing seaborn requires installing additional dependencies; they can be installed with the `dev` extra (e.g., `pip install .[dev]`).
To test the code, run `make test` in the source directory. This will exercise the unit tests (using [pytest](https://docs.pytest.org/)) and generate a coverage report.
Code style is enforced with `flake8` using the settings in the [`setup.cfg`](./setup.cfg) file. Run `make lint` to check. Alternately, you can use `pre-commit` to automatically run lint checks on any files you are committing: just run `pre-commit install` to set it up, and then commit as usual going forward.
Development
-----------
Seaborn development takes place on Github: https://github.com/mwaskom/seaborn
Please submit bugs that you encounter to the [issue tracker](https://github.com/mwaskom/seaborn/issues) with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a [seaborn tag](https://stackoverflow.com/questions/tagged/seaborn).
Raw data
{
"_id": null,
"home_page": null,
"name": "seaborn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Michael Waskom <mwaskom@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz",
"platform": null,
"description": "<img src=\"https://raw.githubusercontent.com/mwaskom/seaborn/master/doc/_static/logo-wide-lightbg.svg\"><br>\n\n--------------------------------------\n\nseaborn: statistical data visualization\n=======================================\n\n[![PyPI Version](https://img.shields.io/pypi/v/seaborn.svg)](https://pypi.org/project/seaborn/)\n[![License](https://img.shields.io/pypi/l/seaborn.svg)](https://github.com/mwaskom/seaborn/blob/master/LICENSE.md)\n[![DOI](https://joss.theoj.org/papers/10.21105/joss.03021/status.svg)](https://doi.org/10.21105/joss.03021)\n[![Tests](https://github.com/mwaskom/seaborn/workflows/CI/badge.svg)](https://github.com/mwaskom/seaborn/actions)\n[![Code Coverage](https://codecov.io/gh/mwaskom/seaborn/branch/master/graph/badge.svg)](https://codecov.io/gh/mwaskom/seaborn)\n\nSeaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics.\n\n\nDocumentation\n-------------\n\nOnline documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org).\n\nThe docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example gallery](https://seaborn.pydata.org/examples/index.html), [API reference](https://seaborn.pydata.org/api.html), [FAQ](https://seaborn.pydata.org/faq), and other useful information.\n\nTo build the documentation locally, please refer to [`doc/README.md`](doc/README.md).\n\nDependencies\n------------\n\nSeaborn supports Python 3.8+.\n\nInstallation requires [numpy](https://numpy.org/), [pandas](https://pandas.pydata.org/), and [matplotlib](https://matplotlib.org/). Some advanced statistical functionality requires [scipy](https://www.scipy.org/) and/or [statsmodels](https://www.statsmodels.org/).\n\n\nInstallation\n------------\n\nThe latest stable release (and required dependencies) can be installed from PyPI:\n\n pip install seaborn\n\nIt is also possible to include optional statistical dependencies:\n\n pip install seaborn[stats]\n\nSeaborn can also be installed with conda:\n\n conda install seaborn\n\nNote that the main anaconda repository lags PyPI in adding new releases, but conda-forge (`-c conda-forge`) typically updates quickly.\n\nCiting\n------\n\nA paper describing seaborn has been published in the [Journal of Open Source Software](https://joss.theoj.org/papers/10.21105/joss.03021). The paper provides an introduction to the key features of the library, and it can be used as a citation if seaborn proves integral to a scientific publication.\n\nTesting\n-------\n\nTesting seaborn requires installing additional dependencies; they can be installed with the `dev` extra (e.g., `pip install .[dev]`).\n\nTo test the code, run `make test` in the source directory. This will exercise the unit tests (using [pytest](https://docs.pytest.org/)) and generate a coverage report.\n\nCode style is enforced with `flake8` using the settings in the [`setup.cfg`](./setup.cfg) file. Run `make lint` to check. Alternately, you can use `pre-commit` to automatically run lint checks on any files you are committing: just run `pre-commit install` to set it up, and then commit as usual going forward.\n\nDevelopment\n-----------\n\nSeaborn development takes place on Github: https://github.com/mwaskom/seaborn\n\nPlease submit bugs that you encounter to the [issue tracker](https://github.com/mwaskom/seaborn/issues) with a reproducible example demonstrating the problem. Questions about usage are more at home on StackOverflow, where there is a [seaborn tag](https://stackoverflow.com/questions/tagged/seaborn).\n",
"bugtrack_url": null,
"license": null,
"summary": "Statistical data visualization",
"version": "0.13.2",
"project_urls": {
"Docs": "http://seaborn.pydata.org",
"Source": "https://github.com/mwaskom/seaborn"
},
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "831100d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5",
"md5": "370853fdbfd32579c7c332af8ca89908",
"sha256": "636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987"
},
"downloads": -1,
"filename": "seaborn-0.13.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "370853fdbfd32579c7c332af8ca89908",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 294914,
"upload_time": "2024-01-25T13:21:49",
"upload_time_iso_8601": "2024-01-25T13:21:49.598686Z",
"url": "https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "8659a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412",
"md5": "04d6f5e15656c62895169e0dec1162e6",
"sha256": "93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7"
},
"downloads": -1,
"filename": "seaborn-0.13.2.tar.gz",
"has_sig": false,
"md5_digest": "04d6f5e15656c62895169e0dec1162e6",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 1457696,
"upload_time": "2024-01-25T13:21:52",
"upload_time_iso_8601": "2024-01-25T13:21:52.551420Z",
"url": "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-25 13:21:52",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mwaskom",
"github_project": "seaborn",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "seaborn"
}