# Seapopym-optimisation
Seapopym-optimisation is a Python project dedicated to the optimization of spatial ecological models, with a focus on the SeapoPym models.
It provides a modular framework for:
- Model calibration using genetic algorithms,
- Management and validation of parameter sets,
- Comparison between simulations and observations (time series, seasonal decomposition, etc.),
- Use of various cost functions (RMSE, GAM decomposition, STL, and more).
This package was developed by Jules Lehodey as part of his thesis "Data driven modeling approach of mesozooplankton and micronekton functional groups".
Raw data
{
"_id": null,
"home_page": null,
"name": "seapopym_optimization",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.12",
"maintainer_email": null,
"keywords": "oceanography, marine ecosystems, marine biology",
"author": "Jules Lehodey",
"author_email": "lehodey.jules+seapopym@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/7b/4e/42583d66fbb90fab5c84bccb7e973ad6feb8fe367701fee8d632c122c942/seapopym_optimization-0.0.1.4.tar.gz",
"platform": null,
"description": "# Seapopym-optimisation\n\nSeapopym-optimisation is a Python project dedicated to the optimization of spatial ecological models, with a focus on the SeapoPym models.\nIt provides a modular framework for:\n\n- Model calibration using genetic algorithms,\n- Management and validation of parameter sets,\n- Comparison between simulations and observations (time series, seasonal decomposition, etc.),\n- Use of various cost functions (RMSE, GAM decomposition, STL, and more).\n\nThis package was developed by Jules Lehodey as part of his thesis \"Data driven modeling approach of mesozooplankton and micronekton functional groups\".\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Python package for optimizing SeapoPym models using DEAP and Dask",
"version": "0.0.1.4",
"project_urls": null,
"split_keywords": [
"oceanography",
" marine ecosystems",
" marine biology"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "ad16d417502943069c538a1d7bb06700f0ee2b68d2b4204de423f6971a05309c",
"md5": "6de94bb1296a5797b5d2b075b136c801",
"sha256": "582efe5a41bf93576aca6aea876f26e8d4bd128a0103a4dac3242cf0851cbf7e"
},
"downloads": -1,
"filename": "seapopym_optimization-0.0.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6de94bb1296a5797b5d2b075b136c801",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.12",
"size": 51161,
"upload_time": "2025-07-25T13:46:04",
"upload_time_iso_8601": "2025-07-25T13:46:04.328394Z",
"url": "https://files.pythonhosted.org/packages/ad/16/d417502943069c538a1d7bb06700f0ee2b68d2b4204de423f6971a05309c/seapopym_optimization-0.0.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7b4e42583d66fbb90fab5c84bccb7e973ad6feb8fe367701fee8d632c122c942",
"md5": "aab2463561810785df6280bc762e45dd",
"sha256": "b375808652d276ff40829d01cfdffc9dbccb1b6857181f0e771cb73ac6b68c6d"
},
"downloads": -1,
"filename": "seapopym_optimization-0.0.1.4.tar.gz",
"has_sig": false,
"md5_digest": "aab2463561810785df6280bc762e45dd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.12",
"size": 37014,
"upload_time": "2025-07-25T13:46:05",
"upload_time_iso_8601": "2025-07-25T13:46:05.648889Z",
"url": "https://files.pythonhosted.org/packages/7b/4e/42583d66fbb90fab5c84bccb7e973ad6feb8fe367701fee8d632c122c942/seapopym_optimization-0.0.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-25 13:46:05",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "seapopym_optimization"
}