search-data-explorer


Namesearch-data-explorer JSON
Version 0.4.2 PyPI version JSON
download
home_pagehttps://github.com/SimonBlanke/search-data-explorer
Summary
upload_time2024-03-02 07:53:39
maintainer
docs_urlNone
authorSimon Blanke
requires_python>=3.5
licenseMIT
keywords visualization data-science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <H1 align="center">
    Search Data Explorer
</H1>

<br>

<H2 align="center">
    Visualize optimization search-data via plotly in a streamlit dashboard
</H2>

The Search-Data-Explorer is a simple application specialized to visualize search-data generated from [Gradient-Free-Optimizers](https://github.com/SimonBlanke/Gradient-Free-Optimizers) or [Hyperactive](https://github.com/SimonBlanke/Hyperactive). It is designed as an easy-to-use tool to gain insights into multi-dimensional data, as commonly found in optimization.

I created this package, because I needed a convenient tool to visually analyse search-data during the development of gradient-free-optimization algorithms. My goal for this package is to help users get insight into the search-data and its corresponding objective-function and search-space. Building on this insight could help improve the selection of the search-space, compare models in the objective-function or explain the behaviour of the optimization algorithm.


<br>

## Disclaimer

This project is in an early development stage and is only tested manually. If you encounter bugs or have suggestions for improvements, then please open an issue.


<br>

## Installation

```console
pip install search-data-explorer
```

<br>

## How to use

The Search Data Explorer has a very simple API, that can be explained by the examples below or just execute the command "`search-data-explorer` [file]" to open the Search Data Explorer without executing a python script.


<br>

### search-data requirements

The Search Data Explorer is used by loading the search-data with a few lines of code. The search data that is loaded from file must follow the pattern below. The columns can have any name but must contain the `score`, which is always included in search-data from [Gradient-Free-Optimizers](https://github.com/SimonBlanke/Gradient-Free-Optimizers) or [Hyperactive](https://github.com/SimonBlanke/Hyperactive).

<table class="table">
<thead class="table-head">
    <tr class="row">
    <td class="cell">first column name</td>
    <td class="cell">another column name</td>
    <td class="cell">...</td>
    <td class="cell">score</td>
    </tr>
</thead>
<tbody class="table-body">
    <tr class="row">
    <td class="cell">0.756</td>
    <td class="cell">0.1</td>
    <td class="cell">0.2</td>
    <td class="cell">-3</td>
    </tr>
    <tr class="row">
    <td class="cell">0.823</td>
    <td class="cell">0.3</td>
    <td class="cell">0.1</td>
    <td class="cell">-10</td>
    </tr>
    <tr class="row">
    <td class="cell">...</td>
    <td class="cell">...</td>
    <td class="cell">...</td>
    <td class="cell">...</td>
    </tr>
    <tr class="row">
    <td class="cell">...</td>
    <td class="cell">...</td>
    <td class="cell">...</td>
    <td class="cell">...</td>
    </tr>
</tbody>
</table>



<br>

## Examples


<br>

### Load search-data by passing dataframe

You can pass the search-data directly, if you do not want to save your search-data to disk and just explore it one time after the optimization has finished.

```python
import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer

from search_data_explorer import SearchDataExplorer


def parabola_function(para):
    loss = para["x"] * para["x"] + para["y"] * para["y"] + para["y"] * para["y"]
    return -loss


search_space = {
    "x": np.arange(-10, 10, 0.1),
    "y": np.arange(-10, 10, 0.1),
    "z": np.arange(-10, 10, 0.1),
}

# generate search-data for this example with gradient-free-optimizers

opt = RandomSearchOptimizer(search_space)
opt.search(parabola_function, n_iter=1000)

search_data = opt.search_data


# Open Search-Data-Explorer

sde = SearchDataExplorer()
sde.open(search_data)  # pass search-data
```


<br>

### Load search-data by passing path to file

If you already have a search-data file on disk you can pass the path to the file to the search-data-explorer.

```python
import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer

from search_data_explorer import SearchDataExplorer


def parabola_function(para):
    loss = para["x"] * para["x"] + para["y"] * para["y"] + para["y"] * para["y"]
    return -loss


search_space = {
    "x": np.arange(-10, 10, 0.1),
    "y": np.arange(-10, 10, 0.1),
    "z": np.arange(-10, 10, 0.1),
}

# generate search-data for this example with gradient-free-optimizers

opt = RandomSearchOptimizer(search_space)
opt.search(parabola_function, n_iter=1000)

search_data = opt.search_data
search_data.to_csv("search_data.csv", index=False)


# Open Search-Data-Explorer

sde = SearchDataExplorer()
sde.open("model1.csv")  # pass path to file on disk
```


<br>

### Load search-data by browsing for file

You can just open the search-data-explorer without passing a file or path. In this case you can browse for the file via a menu inside the search-data-explorer.

```python
import numpy as np
from gradient_free_optimizers import RandomSearchOptimizer

from search_data_explorer import SearchDataExplorer


def parabola_function(para):
    loss = para["x"] * para["x"] + para["y"] * para["y"] + para["y"] * para["y"]
    return -loss


search_space = {
    "x": np.arange(-10, 10, 0.1),
    "y": np.arange(-10, 10, 0.1),
    "z": np.arange(-10, 10, 0.1),
}

# generate search-data for this example with gradient-free-optimizers

opt = RandomSearchOptimizer(search_space)
opt.search(parabola_function, n_iter=1000)

search_data = opt.search_data
search_data.to_csv("search_data.csv", index=False)


# Open Search-Data-Explorer

sde = SearchDataExplorer()
sde.open()  # start without passing anything and use the file explorer within the search-data-explorer
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SimonBlanke/search-data-explorer",
    "name": "search-data-explorer",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "visualization,data-science",
    "author": "Simon Blanke",
    "author_email": "simon.blanke@yahoo.com",
    "download_url": "",
    "platform": null,
    "description": "<H1 align=\"center\">\n    Search Data Explorer\n</H1>\n\n<br>\n\n<H2 align=\"center\">\n    Visualize optimization search-data via plotly in a streamlit dashboard\n</H2>\n\nThe Search-Data-Explorer is a simple application specialized to visualize search-data generated from [Gradient-Free-Optimizers](https://github.com/SimonBlanke/Gradient-Free-Optimizers) or [Hyperactive](https://github.com/SimonBlanke/Hyperactive). It is designed as an easy-to-use tool to gain insights into multi-dimensional data, as commonly found in optimization.\n\nI created this package, because I needed a convenient tool to visually analyse search-data during the development of gradient-free-optimization algorithms. My goal for this package is to help users get insight into the search-data and its corresponding objective-function and search-space. Building on this insight could help improve the selection of the search-space, compare models in the objective-function or explain the behaviour of the optimization algorithm.\n\n\n<br>\n\n## Disclaimer\n\nThis project is in an early development stage and is only tested manually. If you encounter bugs or have suggestions for improvements, then please open an issue.\n\n\n<br>\n\n## Installation\n\n```console\npip install search-data-explorer\n```\n\n<br>\n\n## How to use\n\nThe Search Data Explorer has a very simple API, that can be explained by the examples below or just execute the command \"`search-data-explorer` [file]\" to open the Search Data Explorer without executing a python script.\n\n\n<br>\n\n### search-data requirements\n\nThe Search Data Explorer is used by loading the search-data with a few lines of code. The search data that is loaded from file must follow the pattern below. The columns can have any name but must contain the `score`, which is always included in search-data from [Gradient-Free-Optimizers](https://github.com/SimonBlanke/Gradient-Free-Optimizers) or [Hyperactive](https://github.com/SimonBlanke/Hyperactive).\n\n<table class=\"table\">\n<thead class=\"table-head\">\n    <tr class=\"row\">\n    <td class=\"cell\">first column name</td>\n    <td class=\"cell\">another column name</td>\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">score</td>\n    </tr>\n</thead>\n<tbody class=\"table-body\">\n    <tr class=\"row\">\n    <td class=\"cell\">0.756</td>\n    <td class=\"cell\">0.1</td>\n    <td class=\"cell\">0.2</td>\n    <td class=\"cell\">-3</td>\n    </tr>\n    <tr class=\"row\">\n    <td class=\"cell\">0.823</td>\n    <td class=\"cell\">0.3</td>\n    <td class=\"cell\">0.1</td>\n    <td class=\"cell\">-10</td>\n    </tr>\n    <tr class=\"row\">\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    </tr>\n    <tr class=\"row\">\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    <td class=\"cell\">...</td>\n    </tr>\n</tbody>\n</table>\n\n\n\n<br>\n\n## Examples\n\n\n<br>\n\n### Load search-data by passing dataframe\n\nYou can pass the search-data directly, if you do not want to save your search-data to disk and just explore it one time after the optimization has finished.\n\n```python\nimport numpy as np\nfrom gradient_free_optimizers import RandomSearchOptimizer\n\nfrom search_data_explorer import SearchDataExplorer\n\n\ndef parabola_function(para):\n    loss = para[\"x\"] * para[\"x\"] + para[\"y\"] * para[\"y\"] + para[\"y\"] * para[\"y\"]\n    return -loss\n\n\nsearch_space = {\n    \"x\": np.arange(-10, 10, 0.1),\n    \"y\": np.arange(-10, 10, 0.1),\n    \"z\": np.arange(-10, 10, 0.1),\n}\n\n# generate search-data for this example with gradient-free-optimizers\n\nopt = RandomSearchOptimizer(search_space)\nopt.search(parabola_function, n_iter=1000)\n\nsearch_data = opt.search_data\n\n\n# Open Search-Data-Explorer\n\nsde = SearchDataExplorer()\nsde.open(search_data)  # pass search-data\n```\n\n\n<br>\n\n### Load search-data by passing path to file\n\nIf you already have a search-data file on disk you can pass the path to the file to the search-data-explorer.\n\n```python\nimport numpy as np\nfrom gradient_free_optimizers import RandomSearchOptimizer\n\nfrom search_data_explorer import SearchDataExplorer\n\n\ndef parabola_function(para):\n    loss = para[\"x\"] * para[\"x\"] + para[\"y\"] * para[\"y\"] + para[\"y\"] * para[\"y\"]\n    return -loss\n\n\nsearch_space = {\n    \"x\": np.arange(-10, 10, 0.1),\n    \"y\": np.arange(-10, 10, 0.1),\n    \"z\": np.arange(-10, 10, 0.1),\n}\n\n# generate search-data for this example with gradient-free-optimizers\n\nopt = RandomSearchOptimizer(search_space)\nopt.search(parabola_function, n_iter=1000)\n\nsearch_data = opt.search_data\nsearch_data.to_csv(\"search_data.csv\", index=False)\n\n\n# Open Search-Data-Explorer\n\nsde = SearchDataExplorer()\nsde.open(\"model1.csv\")  # pass path to file on disk\n```\n\n\n<br>\n\n### Load search-data by browsing for file\n\nYou can just open the search-data-explorer without passing a file or path. In this case you can browse for the file via a menu inside the search-data-explorer.\n\n```python\nimport numpy as np\nfrom gradient_free_optimizers import RandomSearchOptimizer\n\nfrom search_data_explorer import SearchDataExplorer\n\n\ndef parabola_function(para):\n    loss = para[\"x\"] * para[\"x\"] + para[\"y\"] * para[\"y\"] + para[\"y\"] * para[\"y\"]\n    return -loss\n\n\nsearch_space = {\n    \"x\": np.arange(-10, 10, 0.1),\n    \"y\": np.arange(-10, 10, 0.1),\n    \"z\": np.arange(-10, 10, 0.1),\n}\n\n# generate search-data for this example with gradient-free-optimizers\n\nopt = RandomSearchOptimizer(search_space)\nopt.search(parabola_function, n_iter=1000)\n\nsearch_data = opt.search_data\nsearch_data.to_csv(\"search_data.csv\", index=False)\n\n\n# Open Search-Data-Explorer\n\nsde = SearchDataExplorer()\nsde.open()  # start without passing anything and use the file explorer within the search-data-explorer\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "",
    "version": "0.4.2",
    "project_urls": {
        "Homepage": "https://github.com/SimonBlanke/search-data-explorer"
    },
    "split_keywords": [
        "visualization",
        "data-science"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d427fa6fd6a6abe61a8da9b9f833ecb47f9de4c2dae0c6e46060648a967c5d83",
                "md5": "7db65f596b89a2aeadb1ef7a57dc598b",
                "sha256": "ee12f4697d6bf5e2811819fcad1e255d365ded6a0854ddc2c8bef0b45d117695"
            },
            "downloads": -1,
            "filename": "search_data_explorer-0.4.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7db65f596b89a2aeadb1ef7a57dc598b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.5",
            "size": 25475,
            "upload_time": "2024-03-02T07:53:39",
            "upload_time_iso_8601": "2024-03-02T07:53:39.429532Z",
            "url": "https://files.pythonhosted.org/packages/d4/27/fa6fd6a6abe61a8da9b9f833ecb47f9de4c2dae0c6e46060648a967c5d83/search_data_explorer-0.4.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-02 07:53:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SimonBlanke",
    "github_project": "search-data-explorer",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "search-data-explorer"
}
        
Elapsed time: 0.19060s