Name | sefef JSON |
Version |
1.2.3
JSON |
| download |
home_page | None |
Summary | SeFEF: Seizure Forecast Evaluation Framework |
upload_time | 2024-12-16 14:28:15 |
maintainer | None |
docs_url | None |
author | Ana Sofia Carmo |
requires_python | None |
license | BSD 3-clause |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
Welcome to ``SeFEF``
======================
.. image:: https://raw.githubusercontent.com/anascacais/sefef/main/docs/logo/sefef-logo.png
:align: center
:alt: SeFEF logo
|
``SeFEF`` is a Seizure Forecast Evaluation Framework written in Python.
The framework standardizes the development, evaluation, and reporting of individualized algorithms for seizure likelihood forecast.
``SeFEF`` aims to decrease development time and minimize implementation errors by automating key procedures within data preparation, training/testing, and computation of evaluation metrics.
Highlights:
-----------
- ``evaluation`` module: implements time series cross-validation.
- ``labeling`` module: automatically labels samples according to the desired pre-ictal duration and prediction latency.
- ``postprocessing`` module: processes individual predicted probabilities into a unified forecast according to the desired forecast horizon.
- ``scoring`` module: computes both deterministic and probabilistic metrics according to the horizon of the forecast.
Installation
------------
Installation can be easily done with ``pip``:
.. code:: bash
$ pip install sefef
Simple Example
--------------
The code below loads the metadata from an existing dataset from the ``examples`` folder, create a ``Dataset`` instance, and creates an adequate split for a time series cross-validation.
.. code:: python
import json
import pandas as pd
from sefef import evaluation
# read example files
files_metadata = pd.read_csv('examples/files_metadata.csv')
with open('examples/sz_onsets.txt', 'r') as f:
sz_onsets = json.load(f)
# create Dataset instance and perform TSCV
dataset = evaluation.Dataset(files_metadata, sz_onsets, sampling_frequency=128)
tscv = evaluation.TimeSeriesCV()
tscv.split(dataset, iteratively=False, plot=True)
Raw data
{
"_id": null,
"home_page": null,
"name": "sefef",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "Ana Sofia Carmo",
"author_email": "anascacais@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/ba/5a/ebb3ea7e5d62590582fcaa63a1ca21c29b0b9a7e2feac1c3870cd17bbdba/sefef-1.2.3.tar.gz",
"platform": null,
"description": "Welcome to ``SeFEF``\n======================\n\n.. image:: https://raw.githubusercontent.com/anascacais/sefef/main/docs/logo/sefef-logo.png\n :align: center\n :alt: SeFEF logo\n\n|\n\n``SeFEF`` is a Seizure Forecast Evaluation Framework written in Python.\nThe framework standardizes the development, evaluation, and reporting of individualized algorithms for seizure likelihood forecast. \n``SeFEF`` aims to decrease development time and minimize implementation errors by automating key procedures within data preparation, training/testing, and computation of evaluation metrics. \n\nHighlights:\n-----------\n\n- ``evaluation`` module: implements time series cross-validation.\n- ``labeling`` module: automatically labels samples according to the desired pre-ictal duration and prediction latency.\n- ``postprocessing`` module: processes individual predicted probabilities into a unified forecast according to the desired forecast horizon.\n- ``scoring`` module: computes both deterministic and probabilistic metrics according to the horizon of the forecast. \n\n\n\nInstallation\n------------\n\nInstallation can be easily done with ``pip``:\n\n.. code:: bash\n\n $ pip install sefef\n\nSimple Example\n--------------\n\nThe code below loads the metadata from an existing dataset from the ``examples`` folder, create a ``Dataset`` instance, and creates an adequate split for a time series cross-validation.\n\n.. code:: python\n\n import json\n import pandas as pd\n from sefef import evaluation\n\n # read example files\n files_metadata = pd.read_csv('examples/files_metadata.csv')\n with open('examples/sz_onsets.txt', 'r') as f:\n sz_onsets = json.load(f)\n \n # create Dataset instance and perform TSCV\n dataset = evaluation.Dataset(files_metadata, sz_onsets, sampling_frequency=128)\n tscv = evaluation.TimeSeriesCV()\n tscv.split(dataset, iteratively=False, plot=True)\n",
"bugtrack_url": null,
"license": "BSD 3-clause",
"summary": "SeFEF: Seizure Forecast Evaluation Framework",
"version": "1.2.3",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "971671d5e6905b95da88122b9640d6747c85e8e4b614f407df4fc4305eca0905",
"md5": "2f0c79165ad022045ec7896f71a14d71",
"sha256": "151e0c3869c8cbad24984f3fb7bf31261ff75489bef7947734869e91deb09037"
},
"downloads": -1,
"filename": "sefef-1.2.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2f0c79165ad022045ec7896f71a14d71",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 21916,
"upload_time": "2024-12-16T14:28:14",
"upload_time_iso_8601": "2024-12-16T14:28:14.602797Z",
"url": "https://files.pythonhosted.org/packages/97/16/71d5e6905b95da88122b9640d6747c85e8e4b614f407df4fc4305eca0905/sefef-1.2.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ba5aebb3ea7e5d62590582fcaa63a1ca21c29b0b9a7e2feac1c3870cd17bbdba",
"md5": "4b8ebdb0a429f04080d2152865dcd15d",
"sha256": "904ad292e598688aa4ae35b7ebf0cdbc3668f61393b4b403e03a4416d60bcfc2"
},
"downloads": -1,
"filename": "sefef-1.2.3.tar.gz",
"has_sig": false,
"md5_digest": "4b8ebdb0a429f04080d2152865dcd15d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 118299,
"upload_time": "2024-12-16T14:28:15",
"upload_time_iso_8601": "2024-12-16T14:28:15.906859Z",
"url": "https://files.pythonhosted.org/packages/ba/5a/ebb3ea7e5d62590582fcaa63a1ca21c29b0b9a7e2feac1c3870cd17bbdba/sefef-1.2.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 14:28:15",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "sefef"
}