segment-torch


Namesegment-torch JSON
Version 0.0.10 PyPI version JSON
download
home_pagehttps://github.com/lacykaltgr/agriculture-image-processing
SummaryUniversal implementation of the UNet architecture for image segmentation.
upload_time2024-01-19 04:24:24
maintainer
docs_urlNone
authorLászló Freund
requires_python
licenseMIT
keywords unet image segmentation segmentation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # UNET SEGMENTATION PYTORCH

## Installation

```bash
pip install segment-torch
```

## Usage

```python
from segment_torch.unet import UNet
from torch import nn

device = "cuda"

config = dict(
    in_channels=3,
    out_channels=1,
    hiddens=[4, 8, 16, 32],
    dropouts=[0, 0.15, 0.15, 0.15],  # hiddens
    maxpools=2,  # hiddens - 1
    kernel_sizes=3,  # 2*hiddens + 3*hiddens + 2
    paddings='same',  # 2*hiddens + 3*hiddens + 2
    strides=1,  # 2*hiddens + 3*hiddens
    dilation=1,
    criterion=nn.BCELoss(),
    output_activation=nn.Sigmoid(),
    activation=nn.ReLU(),
    dimensions=2,
    device=device
)
unet = UNet(**config)
```

**Different ways to define configs**

```python

# 0. None: default values are used
kernel_sizes=None

# 1. Single value or tuple: all layers have the same value
kernel_sizes = 3 
kernel_sizes = (3, 3)

# 2. Lists of values
encooder_kernel_sizes = [3, 3, 3, 3]
decoder_kernel_sizes = [3, 3, 3, 3, 3]
kernel_sizes = [encooder_kernel_sizes, decoder_kernel_sizes]
```



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lacykaltgr/agriculture-image-processing",
    "name": "segment-torch",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "unet,image segmentation,segmentation",
    "author": "L\u00e1szl\u00f3 Freund",
    "author_email": "freundl0509@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/cb/8e/568f9b8d6898dfc0e3dccc7c1195d298863d0291ebc116dc01087c69079a/segment_torch-0.0.10.tar.gz",
    "platform": null,
    "description": "# UNET SEGMENTATION PYTORCH\n\n## Installation\n\n```bash\npip install segment-torch\n```\n\n## Usage\n\n```python\nfrom segment_torch.unet import UNet\nfrom torch import nn\n\ndevice = \"cuda\"\n\nconfig = dict(\n    in_channels=3,\n    out_channels=1,\n    hiddens=[4, 8, 16, 32],\n    dropouts=[0, 0.15, 0.15, 0.15],  # hiddens\n    maxpools=2,  # hiddens - 1\n    kernel_sizes=3,  # 2*hiddens + 3*hiddens + 2\n    paddings='same',  # 2*hiddens + 3*hiddens + 2\n    strides=1,  # 2*hiddens + 3*hiddens\n    dilation=1,\n    criterion=nn.BCELoss(),\n    output_activation=nn.Sigmoid(),\n    activation=nn.ReLU(),\n    dimensions=2,\n    device=device\n)\nunet = UNet(**config)\n```\n\n**Different ways to define configs**\n\n```python\n\n# 0. None: default values are used\nkernel_sizes=None\n\n# 1. Single value or tuple: all layers have the same value\nkernel_sizes = 3 \nkernel_sizes = (3, 3)\n\n# 2. Lists of values\nencooder_kernel_sizes = [3, 3, 3, 3]\ndecoder_kernel_sizes = [3, 3, 3, 3, 3]\nkernel_sizes = [encooder_kernel_sizes, decoder_kernel_sizes]\n```\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Universal implementation of the UNet architecture for image segmentation.",
    "version": "0.0.10",
    "project_urls": {
        "Homepage": "https://github.com/lacykaltgr/agriculture-image-processing"
    },
    "split_keywords": [
        "unet",
        "image segmentation",
        "segmentation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fcc47985c80f1d68f57ddc4976e09fabc0004f9dd81799c08603ef6491a93cf4",
                "md5": "ab695e28530d3ae07aa76eef5b533fa6",
                "sha256": "c0939b296e404d7a9a9269261eb26272f53133659d2a03bab04e45c9c363b062"
            },
            "downloads": -1,
            "filename": "segment_torch-0.0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ab695e28530d3ae07aa76eef5b533fa6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 10762,
            "upload_time": "2024-01-19T04:24:20",
            "upload_time_iso_8601": "2024-01-19T04:24:20.530901Z",
            "url": "https://files.pythonhosted.org/packages/fc/c4/7985c80f1d68f57ddc4976e09fabc0004f9dd81799c08603ef6491a93cf4/segment_torch-0.0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb8e568f9b8d6898dfc0e3dccc7c1195d298863d0291ebc116dc01087c69079a",
                "md5": "f71adccab8bbdce393f4e489253b0bc3",
                "sha256": "badc19d6817e1d9e8ee2defb8b7bd13ba358bf0db467bd9ae8c451c8578bd5a5"
            },
            "downloads": -1,
            "filename": "segment_torch-0.0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "f71adccab8bbdce393f4e489253b0bc3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 8537,
            "upload_time": "2024-01-19T04:24:24",
            "upload_time_iso_8601": "2024-01-19T04:24:24.174642Z",
            "url": "https://files.pythonhosted.org/packages/cb/8e/568f9b8d6898dfc0e3dccc7c1195d298863d0291ebc116dc01087c69079a/segment_torch-0.0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-19 04:24:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lacykaltgr",
    "github_project": "agriculture-image-processing",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "segment-torch"
}
        
Elapsed time: 0.16919s