selfcheckgpt


Nameselfcheckgpt JSON
Version 0.1.7 PyPI version JSON
download
home_pagehttps://github.com/potsawee/selfcheckgpt
SummarySelfCheckGPT: Assessing text-based responses from LLMs
upload_time2024-03-10 04:52:55
maintainer
docs_urlNone
authorPotsawee Manakul
requires_python
licenseMIT
keywords selfcheckgpt
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            SelfCheckGPT
=====================================================

- Code for our paper "SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models", https://arxiv.org/abs/2303.08896
- More information can be found on our project page: https://github.com/potsawee/selfcheckgpt

Installation
-----------------------------------------------------

::

    pip install selfcheckgpt


SelfCheckGPT Usage
-----------------------------------------------------
See more details in Jupyter Notebook: https://github.com/potsawee/selfcheckgpt/blob/main/demo/SelfCheck_demo1.ipynb

.. code:: python

    from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckBERTScore

    selfcheck_mqag = SelfCheckMQAG()
    selfcheck_bertscore = SelfCheckBERTScore()

    sent_scores_mqag = selfcheck_mqag.predict(
        sentences,
        passage,
        [sample1, sample2, sample3],
        num_questions_per_sent = 5,
        scoring_method = 'bayes_with_alpha',
        beta1 = 0.8, beta2 = 0.8,
    )
    sent_scores_bertscore = selfcheck_bertscore.predict(
        sentences,
        [sample1, sample2, sample3],
    )

MQAG Usage
-----------------------------------------------------
See more details in Jupyter Notebook: https://github.com/potsawee/selfcheckgpt/blob/main/demo/MQAG_demo1.ipynb

.. code:: python

    from selfcheckgpt.modeling_mqag import MQAG
    mqag_model = MQAG()



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/potsawee/selfcheckgpt",
    "name": "selfcheckgpt",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "selfcheckgpt",
    "author": "Potsawee Manakul",
    "author_email": "m.potsawee@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f8/cb/b4c3d96b5df9dfff6bb938d0690011a337880708be20c82f87e4ba7a093d/selfcheckgpt-0.1.7.tar.gz",
    "platform": null,
    "description": "SelfCheckGPT\n=====================================================\n\n- Code for our paper \"SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models\", https://arxiv.org/abs/2303.08896\n- More information can be found on our project page: https://github.com/potsawee/selfcheckgpt\n\nInstallation\n-----------------------------------------------------\n\n::\n\n    pip install selfcheckgpt\n\n\nSelfCheckGPT Usage\n-----------------------------------------------------\nSee more details in Jupyter Notebook: https://github.com/potsawee/selfcheckgpt/blob/main/demo/SelfCheck_demo1.ipynb\n\n.. code:: python\n\n    from selfcheckgpt.modeling_selfcheck import SelfCheckMQAG, SelfCheckBERTScore\n\n    selfcheck_mqag = SelfCheckMQAG()\n    selfcheck_bertscore = SelfCheckBERTScore()\n\n    sent_scores_mqag = selfcheck_mqag.predict(\n        sentences,\n        passage,\n        [sample1, sample2, sample3],\n        num_questions_per_sent = 5,\n        scoring_method = 'bayes_with_alpha',\n        beta1 = 0.8, beta2 = 0.8,\n    )\n    sent_scores_bertscore = selfcheck_bertscore.predict(\n        sentences,\n        [sample1, sample2, sample3],\n    )\n\nMQAG Usage\n-----------------------------------------------------\nSee more details in Jupyter Notebook: https://github.com/potsawee/selfcheckgpt/blob/main/demo/MQAG_demo1.ipynb\n\n.. code:: python\n\n    from selfcheckgpt.modeling_mqag import MQAG\n    mqag_model = MQAG()\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "SelfCheckGPT: Assessing text-based responses from LLMs",
    "version": "0.1.7",
    "project_urls": {
        "Homepage": "https://github.com/potsawee/selfcheckgpt"
    },
    "split_keywords": [
        "selfcheckgpt"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f8cbb4c3d96b5df9dfff6bb938d0690011a337880708be20c82f87e4ba7a093d",
                "md5": "de19bd437c82e1a122825ad6d298912f",
                "sha256": "38568c38d9398c61976a2739e752e780c759189175f5a1f62c5b58a2d761c706"
            },
            "downloads": -1,
            "filename": "selfcheckgpt-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "de19bd437c82e1a122825ad6d298912f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 16744,
            "upload_time": "2024-03-10T04:52:55",
            "upload_time_iso_8601": "2024-03-10T04:52:55.660453Z",
            "url": "https://files.pythonhosted.org/packages/f8/cb/b4c3d96b5df9dfff6bb938d0690011a337880708be20c82f87e4ba7a093d/selfcheckgpt-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-10 04:52:55",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "potsawee",
    "github_project": "selfcheckgpt",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "selfcheckgpt"
}
        
Elapsed time: 0.65761s