semi-classicalqrng-py-bindings


Namesemi-classicalqrng-py-bindings JSON
Version 1.1.0 PyPI version JSON
download
home_pageNone
SummaryQuantum-inspired Random Number Generator (QRNG) for Python
upload_time2025-02-01 04:30:23
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseMIT
keywords random number generator quantum cryptography
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ๐ŸŒŒ Quantum RNG

A high-performance quantum-inspired random number generator that leverages quantum mechanical principles in classical computing environments. This library simulates quantum phenomena on classical hardware to generate high-quality random numbers with proven entropy characteristics.

## โœจ Features

- Quantum-inspired random number generation using simulated quantum effects:
  - Quantum superposition
  - State vector evolution
  - Quantum entanglement
  - Decoherence simulation
- High entropy output (63.999872 bits/sample)
- Comprehensive test suite with statistical validation
- Extensive documentation and examples
- Cross-platform C implementation
- Hardware-optimized performance

## โšก Performance

- 4.82M operations per second
- 178.45 MB/sec throughput
- ~4KB context size
- Optimized for L1 cache usage
- Verified non-deterministic output
- Competitive with leading classical RNGs while providing quantum properties

## ๐Ÿ› ๏ธ Installation

```bash
# Clone the repository
git clone https://github.com/tsotchke/quantum_rng.git
cd quantum_rng

# Build the library and examples
make
```

## ๐Ÿš€ Quick Start

```c
#include <quantum_rng.h>

int main() {
    qrng_ctx *ctx;
    qrng_error err;
    
    // Initialize RNG
    err = qrng_init(&ctx, NULL, 0);
    if (err != QRNG_SUCCESS) {
        fprintf(stderr, "Failed to initialize: %s\n", qrng_error_string(err));
        return 1;
    }
    
    // Generate random numbers
    printf("Random uint64: %lu\n", qrng_uint64(ctx));
    printf("Random double: %f\n", qrng_double(ctx));
    printf("Random range [1,6]: %d\n", qrng_range(ctx, 1, 6));
    
    // Cleanup
    qrng_free(ctx);
    return 0;
}
```

## ๐Ÿ“š Documentation

- [Quantum RNG Deep Dive](docs/quantum_rng.md) - Comprehensive explanation of the quantum RNG's principles, advantages, and impact
- [API Reference](docs/api_reference.md) - Detailed API documentation with examples
- [Quantum Principles](docs/quantum_principles.md) - Technical details of quantum simulation
- [Performance Analysis](docs/performance_analysis.md) - Detailed performance metrics and comparisons

## ๐Ÿ’ก Examples

### ๐Ÿ”’ Cryptography

The initial release includes two cryptographic examples that demonstrate the library's capabilities in security applications:

#### Key Derivation
- Implementation: [examples/crypto/key_derivation.c](examples/crypto/key_derivation.c)
- Tests: [examples/crypto/key_derivation_test.c](examples/crypto/key_derivation_test.c)
- Analysis: [examples/crypto/key_derivation_analysis.md](examples/crypto/key_derivation_analysis.md)

Features:
- Quantum-enhanced key derivation
- Multiple iterations showing optimization progress
- Comprehensive test suite
- Performance analysis

#### Key Exchange
- Implementation: [examples/crypto/key_exchange.c](examples/crypto/key_exchange.c)
- Tests: [examples/crypto/key_exchange_test.c](examples/crypto/key_exchange_test.c)
- Analysis: [examples/crypto/key_exchange_analysis.md](examples/crypto/key_exchange_analysis.md)

Features:
- Secure key exchange protocol
- Quantum entropy integration
- Test suite with security verification
- Performance benchmarks

### ๐Ÿ’น Finance

#### Monte Carlo Simulation
- Implementation: [examples/finance/monte_carlo.c](examples/finance/monte_carlo.c)
- Header: [examples/finance/monte_carlo.h](examples/finance/monte_carlo.h)
- Analysis: [examples/finance/monte_carlo_analysis.md](examples/finance/monte_carlo_analysis.md)

Features:
- Advanced financial modeling using quantum randomness
- Efficient path generation
- Statistical analysis tools
- Performance optimizations
- Comprehensive documentation

### ๐ŸŽฒ Games

#### Quantum Dice
- Implementation: [examples/games/quantum_dice.c](examples/games/quantum_dice.c)
- Header: [examples/games/quantum_dice.h](examples/games/quantum_dice.h)

A simple but effective demonstration of the RNG in action:
- Fair dice rolling implementation
- Configurable sides (d4, d6, d8, d10, d12, d20, etc.)
- Statistical distribution tests
- Example of basic RNG usage

## ๐Ÿงช Testing

The library includes a comprehensive test suite:

```bash
# Run all tests
make test

# Run specific test suites
./tests/comprehensive_test  # Full functionality verification
./tests/edge_cases_test    # Edge case handling
./tests/test_quantum_rng   # Core RNG validation
```

### Statistical Testing
```bash
# Run statistical tests
./tests/statistical/statistical_tests

# Run quantum property verification
./tests/quantum_stats
```

## ๐Ÿ“Š Performance Testing

```bash
# Run full benchmark suite
make benchmark
./benchmark_suite

# Run specific benchmarks
./tests/benchmark_matrix   # Matrix operation performance
```

## ๐Ÿ”ฎ Future Improvements

We have several exciting examples and applications in development that will be released soon:

### Finance Applications
- Options Pricing - Black-Scholes model with quantum entropy
- Quantum Portfolio - Portfolio optimization using quantum principles
- Heston Model - Stochastic volatility modeling

### Game Development
- Quantum Evolution - Evolutionary algorithms with quantum randomness
- Particle System - Physics-based particle simulation
- Procedural Worlds - Terrain and world generation
- Quantum Slots - Fair slot machine implementation
- Terrain Generation - Advanced landscape generation
- Loot System - Fair item drop system

### Machine Learning
- Quantum Transformer - RNG-enhanced transformer architecture
- Neural Initialization - Quantum-inspired weight initialization
- Quantum GAN - Generative adversarial network with quantum noise

### Scientific Applications
- Molecular Dynamics - Particle simulation
- Quantum Walk - Random walk implementations
- Weather Simulation - Atmospheric modeling
- Quantum Noise - Advanced noise generation

### Networking
- Quantum Routing - Network routing algorithms
- Traffic Simulation - Network traffic modeling

Each of these examples will be thoroughly tested and documented before release, demonstrating the versatility of the Quantum RNG library across different domains.

## ๐Ÿค Contributing

We welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details on:

- Code style and standards
- Testing requirements
- Documentation expectations
- Pull request process

## ๐Ÿ“œ License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## ๐Ÿ™ Acknowledgments

- Nielsen & Chuang's "Quantum Computation and Quantum Information"
- The quantum computing research community
- All contributors and testers

## ๐Ÿ“ Citation

If you use this library in your research, please cite:

```bibtex
@software{quantum_rng,
  title = {Semi-Classical Quantum Random Number Generator With Examples},
  author = {tsotchke},
  year = {2024},
  url = {https://github.com/tsotchke/quantum_rng}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "semi-classicalqrng-py-bindings",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "random, number, generator, quantum, cryptography",
    "author": null,
    "author_email": "Your Name <you@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/0e/f4/7e9f32cbcca9c5ec3dd2902c4ad46955aff0e49a32f74b7fbf48b6f8a769/semi_classicalqrng_py_bindings-1.1.0.tar.gz",
    "platform": null,
    "description": "# \ud83c\udf0c Quantum RNG\n\nA high-performance quantum-inspired random number generator that leverages quantum mechanical principles in classical computing environments. This library simulates quantum phenomena on classical hardware to generate high-quality random numbers with proven entropy characteristics.\n\n## \u2728 Features\n\n- Quantum-inspired random number generation using simulated quantum effects:\n  - Quantum superposition\n  - State vector evolution\n  - Quantum entanglement\n  - Decoherence simulation\n- High entropy output (63.999872 bits/sample)\n- Comprehensive test suite with statistical validation\n- Extensive documentation and examples\n- Cross-platform C implementation\n- Hardware-optimized performance\n\n## \u26a1 Performance\n\n- 4.82M operations per second\n- 178.45 MB/sec throughput\n- ~4KB context size\n- Optimized for L1 cache usage\n- Verified non-deterministic output\n- Competitive with leading classical RNGs while providing quantum properties\n\n## \ud83d\udee0\ufe0f Installation\n\n```bash\n# Clone the repository\ngit clone https://github.com/tsotchke/quantum_rng.git\ncd quantum_rng\n\n# Build the library and examples\nmake\n```\n\n## \ud83d\ude80 Quick Start\n\n```c\n#include <quantum_rng.h>\n\nint main() {\n    qrng_ctx *ctx;\n    qrng_error err;\n    \n    // Initialize RNG\n    err = qrng_init(&ctx, NULL, 0);\n    if (err != QRNG_SUCCESS) {\n        fprintf(stderr, \"Failed to initialize: %s\\n\", qrng_error_string(err));\n        return 1;\n    }\n    \n    // Generate random numbers\n    printf(\"Random uint64: %lu\\n\", qrng_uint64(ctx));\n    printf(\"Random double: %f\\n\", qrng_double(ctx));\n    printf(\"Random range [1,6]: %d\\n\", qrng_range(ctx, 1, 6));\n    \n    // Cleanup\n    qrng_free(ctx);\n    return 0;\n}\n```\n\n## \ud83d\udcda Documentation\n\n- [Quantum RNG Deep Dive](docs/quantum_rng.md) - Comprehensive explanation of the quantum RNG's principles, advantages, and impact\n- [API Reference](docs/api_reference.md) - Detailed API documentation with examples\n- [Quantum Principles](docs/quantum_principles.md) - Technical details of quantum simulation\n- [Performance Analysis](docs/performance_analysis.md) - Detailed performance metrics and comparisons\n\n## \ud83d\udca1 Examples\n\n### \ud83d\udd12 Cryptography\n\nThe initial release includes two cryptographic examples that demonstrate the library's capabilities in security applications:\n\n#### Key Derivation\n- Implementation: [examples/crypto/key_derivation.c](examples/crypto/key_derivation.c)\n- Tests: [examples/crypto/key_derivation_test.c](examples/crypto/key_derivation_test.c)\n- Analysis: [examples/crypto/key_derivation_analysis.md](examples/crypto/key_derivation_analysis.md)\n\nFeatures:\n- Quantum-enhanced key derivation\n- Multiple iterations showing optimization progress\n- Comprehensive test suite\n- Performance analysis\n\n#### Key Exchange\n- Implementation: [examples/crypto/key_exchange.c](examples/crypto/key_exchange.c)\n- Tests: [examples/crypto/key_exchange_test.c](examples/crypto/key_exchange_test.c)\n- Analysis: [examples/crypto/key_exchange_analysis.md](examples/crypto/key_exchange_analysis.md)\n\nFeatures:\n- Secure key exchange protocol\n- Quantum entropy integration\n- Test suite with security verification\n- Performance benchmarks\n\n### \ud83d\udcb9 Finance\n\n#### Monte Carlo Simulation\n- Implementation: [examples/finance/monte_carlo.c](examples/finance/monte_carlo.c)\n- Header: [examples/finance/monte_carlo.h](examples/finance/monte_carlo.h)\n- Analysis: [examples/finance/monte_carlo_analysis.md](examples/finance/monte_carlo_analysis.md)\n\nFeatures:\n- Advanced financial modeling using quantum randomness\n- Efficient path generation\n- Statistical analysis tools\n- Performance optimizations\n- Comprehensive documentation\n\n### \ud83c\udfb2 Games\n\n#### Quantum Dice\n- Implementation: [examples/games/quantum_dice.c](examples/games/quantum_dice.c)\n- Header: [examples/games/quantum_dice.h](examples/games/quantum_dice.h)\n\nA simple but effective demonstration of the RNG in action:\n- Fair dice rolling implementation\n- Configurable sides (d4, d6, d8, d10, d12, d20, etc.)\n- Statistical distribution tests\n- Example of basic RNG usage\n\n## \ud83e\uddea Testing\n\nThe library includes a comprehensive test suite:\n\n```bash\n# Run all tests\nmake test\n\n# Run specific test suites\n./tests/comprehensive_test  # Full functionality verification\n./tests/edge_cases_test    # Edge case handling\n./tests/test_quantum_rng   # Core RNG validation\n```\n\n### Statistical Testing\n```bash\n# Run statistical tests\n./tests/statistical/statistical_tests\n\n# Run quantum property verification\n./tests/quantum_stats\n```\n\n## \ud83d\udcca Performance Testing\n\n```bash\n# Run full benchmark suite\nmake benchmark\n./benchmark_suite\n\n# Run specific benchmarks\n./tests/benchmark_matrix   # Matrix operation performance\n```\n\n## \ud83d\udd2e Future Improvements\n\nWe have several exciting examples and applications in development that will be released soon:\n\n### Finance Applications\n- Options Pricing - Black-Scholes model with quantum entropy\n- Quantum Portfolio - Portfolio optimization using quantum principles\n- Heston Model - Stochastic volatility modeling\n\n### Game Development\n- Quantum Evolution - Evolutionary algorithms with quantum randomness\n- Particle System - Physics-based particle simulation\n- Procedural Worlds - Terrain and world generation\n- Quantum Slots - Fair slot machine implementation\n- Terrain Generation - Advanced landscape generation\n- Loot System - Fair item drop system\n\n### Machine Learning\n- Quantum Transformer - RNG-enhanced transformer architecture\n- Neural Initialization - Quantum-inspired weight initialization\n- Quantum GAN - Generative adversarial network with quantum noise\n\n### Scientific Applications\n- Molecular Dynamics - Particle simulation\n- Quantum Walk - Random walk implementations\n- Weather Simulation - Atmospheric modeling\n- Quantum Noise - Advanced noise generation\n\n### Networking\n- Quantum Routing - Network routing algorithms\n- Traffic Simulation - Network traffic modeling\n\nEach of these examples will be thoroughly tested and documented before release, demonstrating the versatility of the Quantum RNG library across different domains.\n\n## \ud83e\udd1d Contributing\n\nWe welcome contributions! Please see our [Contributing Guidelines](CONTRIBUTING.md) for details on:\n\n- Code style and standards\n- Testing requirements\n- Documentation expectations\n- Pull request process\n\n## \ud83d\udcdc License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- Nielsen & Chuang's \"Quantum Computation and Quantum Information\"\n- The quantum computing research community\n- All contributors and testers\n\n## \ud83d\udcdd Citation\n\nIf you use this library in your research, please cite:\n\n```bibtex\n@software{quantum_rng,\n  title = {Semi-Classical Quantum Random Number Generator With Examples},\n  author = {tsotchke},\n  year = {2024},\n  url = {https://github.com/tsotchke/quantum_rng}\n}\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Quantum-inspired Random Number Generator (QRNG) for Python",
    "version": "1.1.0",
    "project_urls": {
        "Documentation": "https://github.com/yourusername/qrng#readme",
        "Homepage": "https://github.com/yourusername/qrng",
        "Issues": "https://github.com/yourusername/qrng/issues",
        "Repository": "https://github.com/yourusername/qrng.git"
    },
    "split_keywords": [
        "random",
        " number",
        " generator",
        " quantum",
        " cryptography"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "8a48d0c4abb4027bb4749837ee8771ad2ec8fc2a965aaef80657b1d06c001756",
                "md5": "2b8f43ca3f84732366648738d2f4ebda",
                "sha256": "8744f534dcd4d2a920aada06f422c8ad896d600de8fa302949128e21b582d3e8"
            },
            "downloads": -1,
            "filename": "semi_classicalqrng_py_bindings-1.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2b8f43ca3f84732366648738d2f4ebda",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7362,
            "upload_time": "2025-02-01T04:30:20",
            "upload_time_iso_8601": "2025-02-01T04:30:20.393376Z",
            "url": "https://files.pythonhosted.org/packages/8a/48/d0c4abb4027bb4749837ee8771ad2ec8fc2a965aaef80657b1d06c001756/semi_classicalqrng_py_bindings-1.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "0ef47e9f32cbcca9c5ec3dd2902c4ad46955aff0e49a32f74b7fbf48b6f8a769",
                "md5": "df47f2f22fd8a775babe2de328aa7775",
                "sha256": "f26cdf263ae74c68ff8c335013f188f7f373fe82f72dcbdaec054f2d8c783ad4"
            },
            "downloads": -1,
            "filename": "semi_classicalqrng_py_bindings-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "df47f2f22fd8a775babe2de328aa7775",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 16266,
            "upload_time": "2025-02-01T04:30:23",
            "upload_time_iso_8601": "2025-02-01T04:30:23.119581Z",
            "url": "https://files.pythonhosted.org/packages/0e/f4/7e9f32cbcca9c5ec3dd2902c4ad46955aff0e49a32f74b7fbf48b6f8a769/semi_classicalqrng_py_bindings-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-01 04:30:23",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yourusername",
    "github_project": "qrng#readme",
    "github_not_found": true,
    "lcname": "semi-classicalqrng-py-bindings"
}
        
Elapsed time: 0.42511s