seqinf


Nameseqinf JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummarySequential inference abstractions
upload_time2024-12-11 05:44:43
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseNone
keywords simulation machine learning statistics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Overview
`seqinf` is a Python library for performing sequential simulation-based
inference. It aims to complement the popular [`sbi`][1] package by providing
top-level abstractions that enable running methods like SNPE/SNLE/etc without
additional boilerplate. It also provides additional inference diagnostics and
support for Bayesian NDEs and active methods (e.g., ASNPE).

# Install
Installation is available through PyPI:

```sh
pip install seqinf
```

## Dependencies
Note the version clash between `sbibm`'s requirement for `sbi`, and the latest
`sbi`. This can more or less be ignored, and if this presents an issue when
installing locally, just make sure to install `sbi` _after_ `sbibm`.



# Citing this package
Although `seqinf` is intended for general pipelines, it was principally written
to wrap [ASNPE][2]. If you use this library in your work, please cite the
following:

```
@misc{griesemer2024activesequentialposteriorestimation,
      title={Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference}, 
      author={Sam Griesemer and Defu Cao and Zijun Cui and Carolina Osorio and Yan Liu},
      year={2024},
      eprint={2412.05590},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2412.05590}, 
}
```


[1]: https://github.com/sbi-dev/sbi
[2]: https://arxiv.org/abs/2412.05590

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "seqinf",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "simulation, machine learning, statistics",
    "author": null,
    "author_email": "Sam Griesemer <samgriesemer+git@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/64/e1/8da981d0ba27008700dc7d96e7cbb2bd6f62b0068c28414c5f5747694a77/seqinf-0.2.1.tar.gz",
    "platform": null,
    "description": "# Overview\n`seqinf` is a Python library for performing sequential simulation-based\ninference. It aims to complement the popular [`sbi`][1] package by providing\ntop-level abstractions that enable running methods like SNPE/SNLE/etc without\nadditional boilerplate. It also provides additional inference diagnostics and\nsupport for Bayesian NDEs and active methods (e.g., ASNPE).\n\n# Install\nInstallation is available through PyPI:\n\n```sh\npip install seqinf\n```\n\n## Dependencies\nNote the version clash between `sbibm`'s requirement for `sbi`, and the latest\n`sbi`. This can more or less be ignored, and if this presents an issue when\ninstalling locally, just make sure to install `sbi` _after_ `sbibm`.\n\n\n\n# Citing this package\nAlthough `seqinf` is intended for general pipelines, it was principally written\nto wrap [ASNPE][2]. If you use this library in your work, please cite the\nfollowing:\n\n```\n@misc{griesemer2024activesequentialposteriorestimation,\n      title={Active Sequential Posterior Estimation for Sample-Efficient Simulation-Based Inference}, \n      author={Sam Griesemer and Defu Cao and Zijun Cui and Carolina Osorio and Yan Liu},\n      year={2024},\n      eprint={2412.05590},\n      archivePrefix={arXiv},\n      primaryClass={cs.LG},\n      url={https://arxiv.org/abs/2412.05590}, \n}\n```\n\n\n[1]: https://github.com/sbi-dev/sbi\n[2]: https://arxiv.org/abs/2412.05590\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Sequential inference abstractions",
    "version": "0.2.1",
    "project_urls": {
        "Documentation": "https://doc.olog.io/<project-name>",
        "Homepage": "https://doc.olog.io/<project-name>",
        "Issues": "https://git.olog.io/olog/<project-name>/issues",
        "Repository": "https://git.olog.io/olog/<project-name>"
    },
    "split_keywords": [
        "simulation",
        " machine learning",
        " statistics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "57f2cc788e5a2a706cc44d5ad9cd85a4282952526d8b0ea86417f4c84658702d",
                "md5": "3a448a027be3d9cfc509048fcdf29e56",
                "sha256": "0fcee56e62ba9c7e1ab0ab64ec553b6bafa2c6d9b297f68c6d59b1c41695bf20"
            },
            "downloads": -1,
            "filename": "seqinf-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3a448a027be3d9cfc509048fcdf29e56",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 72044,
            "upload_time": "2024-12-11T05:44:40",
            "upload_time_iso_8601": "2024-12-11T05:44:40.607655Z",
            "url": "https://files.pythonhosted.org/packages/57/f2/cc788e5a2a706cc44d5ad9cd85a4282952526d8b0ea86417f4c84658702d/seqinf-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "64e18da981d0ba27008700dc7d96e7cbb2bd6f62b0068c28414c5f5747694a77",
                "md5": "365358979946324d3761c80d0e977a0b",
                "sha256": "faba68c1334a1c82717b72eacd3c578711d79e36224b52d0ffce27a8d4fa03c6"
            },
            "downloads": -1,
            "filename": "seqinf-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "365358979946324d3761c80d0e977a0b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 61050,
            "upload_time": "2024-12-11T05:44:43",
            "upload_time_iso_8601": "2024-12-11T05:44:43.046789Z",
            "url": "https://files.pythonhosted.org/packages/64/e1/8da981d0ba27008700dc7d96e7cbb2bd6f62b0068c28414c5f5747694a77/seqinf-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-11 05:44:43",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "seqinf"
}
        
Elapsed time: 0.67021s