sequal


Namesequal JSON
Version 1.0.3 PyPI version JSON
download
home_pageNone
SummaryA Python package for working with protein sequence and PTM
upload_time2024-08-02 14:16:56
maintainerNone
docs_urlNone
authorToan K. Phung
requires_python<4.0,>=3.9
licenseMIT
keywords protein sequence modification mass spectrometry
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SEQUAL / seq=

Sequal is a Python package for in-silico generation of modified sequences from a sequence input and modifications. It is designed to assist in protein engineering, mass spectrometry analysis, drug design, and other bioinformatics research.

## Features

- Generate all possible sequences with static and variable modifications.
- Support for custom modification annotations.
- Utilities for mass spectrometry fragment generation.

## Installation

To install Sequal, use pip:

```sh
pip install sequal
````

## Usage

### Sequence comprehension

Using Sequence Object with Unmodified Protein Sequence

```python
from sequal.sequence import Sequence
#Using Sequence object with unmodified protein sequence

seq = Sequence("TESTEST")
print(seq.seq) #should print "TESTEST"
print(seq[0:2]) #should print "TE"
```

Using Sequence Object with Modified Protein Sequence

```python
from sequal.sequence import Sequence
#Using Sequence object with modified protein sequence. []{}() could all be used as modification annotation. 

seq = Sequence("TEN[HexNAc]ST")
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid

seq = Sequence("TEN[HexNAc][HexNAc]ST")
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc, HexNAc] on the 3rd amino acid   

# .mods property provides an access to all amino acids at this amino acid

seq = Sequence("TE[HexNAc]NST", mod_position="left") #mod_position left indicate that the modification should be on the left of the amino acid instead of default which is right
for i in seq.seq:
    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid
```

Custom Annotation Formatting

```python
from sequal.sequence import Sequence
#Format sequence with custom annotation
seq = Sequence("TENST")
a = {1:"tes", 2:["1", "200"]}
print(seq.to_string_customize(a, individual_annotation_enclose=False, individual_annotation_separator="."))
# By supplying .to_string_customize with a dictionary of position on the sequence that you wish to annotate
# The above would print out TE[tes]N[1.200]ST
```

### Modification

Creating a Modification Object

```python
from sequal.modification import Modification

# Create a modification object and try to find all its possible positions using regex
mod = Modification("HexNAc", regex_pattern="N[^P][S|T]")
for ps, pe in mod.find_positions("TESNEST"):
    print(ps, pe)
    # this should print out the position 3 on the sequence as the start of the match and position 6 as the end of the match
```

### Generating Modified Sequences

Static Modification

```python
from sequal.sequence import ModdedSequenceGenerator
from sequal.modification import Modification

propiona = Modification("Propionamide", regex_pattern="C", mod_type="static")
seq = "TECSNTT"
mods = [propiona]
g = ModdedSequenceGenerator(seq, static_mods=mods)
for i in g.generate():
    print(i)  # should print {2: [Propionamide]}
```

Variable Modification

```python
from sequal.sequence import ModdedSequenceGenerator
from sequal.modification import Modification

nsequon = Modification("HexNAc", regex_pattern="N[^P][S|T]", mod_type="variable", labile=True)
osequon = Modification("Mannose", regex_pattern="[S|T]", mod_type="variable", labile=True)
carbox = Modification("Carboxylation", regex_pattern="E", mod_type="variable", labile=True)

seq = "TECSNTT"
mods = [nsequon, osequon, carbox]
g = ModdedSequenceGenerator(seq, mods, [])
print(g.variable_map.mod_position_dict)
# should print {'HexNAc0': [3], 'Mannose0': [0, 2, 4, 5, 6], 'Carboxylation0': [1]}

for i in g.generate():
    print(i)
    # should print all possible combinations of variable modifications
```

### Mass spectrometry utilities

Generating Non-Labile and Labile Ions

```python
from sequal.mass_spectrometry import fragment_non_labile, fragment_labile
from sequal.modification import Modification
from sequal.sequence import ModdedSequenceGenerator, Sequence

nsequon = Modification("HexNAc", regex_pattern="N[^P][S|T]", mod_type="variable", labile=True, labile_number=1, mass=203)
propiona = Modification("Propionamide", regex_pattern="C", mod_type="static", mass=71)

seq = "TECSNTT"
static_mods = [propiona]
variable_mods = [nsequon]

g = ModdedSequenceGenerator(seq, variable_mods, static_mods)
for i in g.generate():
    print(i)
    s = Sequence(seq, mods=i)
    for b, y in fragment_non_labile(s, "by"):
        print(b, "b{}".format(b.fragment_number))
        print(y, "y{}".format(y.fragment_number))

g = ModdedSequenceGenerator(seq, variable_mods, static_mods)
for i in g.generate():
    s = Sequence(seq, mods=i)
    ion = fragment_labile(s)
    if ion.has_labile:
        print(ion, "Y{}".format(ion.fragment_number))
        print(ion.mz_calculate(1))
```

## License

This project is licensed under the MIT License - see the LICENSE file for details.
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sequal",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "protein sequence, modification, mass spectrometry",
    "author": "Toan K. Phung",
    "author_email": "toan.phungkhoiquoctoan@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/27/15/36a49fb9541b023b702b0dc033fb60a1f5a27ff8712b47c773186ed5921d/sequal-1.0.3.tar.gz",
    "platform": null,
    "description": "# SEQUAL / seq=\n\nSequal is a Python package for in-silico generation of modified sequences from a sequence input and modifications. It is designed to assist in protein engineering, mass spectrometry analysis, drug design, and other bioinformatics research.\n\n## Features\n\n- Generate all possible sequences with static and variable modifications.\n- Support for custom modification annotations.\n- Utilities for mass spectrometry fragment generation.\n\n## Installation\n\nTo install Sequal, use pip:\n\n```sh\npip install sequal\n````\n\n## Usage\n\n### Sequence comprehension\n\nUsing Sequence Object with Unmodified Protein Sequence\n\n```python\nfrom sequal.sequence import Sequence\n#Using Sequence object with unmodified protein sequence\n\nseq = Sequence(\"TESTEST\")\nprint(seq.seq) #should print \"TESTEST\"\nprint(seq[0:2]) #should print \"TE\"\n```\n\nUsing Sequence Object with Modified Protein Sequence\n\n```python\nfrom sequal.sequence import Sequence\n#Using Sequence object with modified protein sequence. []{}() could all be used as modification annotation. \n\nseq = Sequence(\"TEN[HexNAc]ST\")\nfor i in seq.seq:\n    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid\n\nseq = Sequence(\"TEN[HexNAc][HexNAc]ST\")\nfor i in seq.seq:\n    print(i, i.mods) #should print N [HexNAc, HexNAc] on the 3rd amino acid   \n\n# .mods property provides an access to all amino acids at this amino acid\n\nseq = Sequence(\"TE[HexNAc]NST\", mod_position=\"left\") #mod_position left indicate that the modification should be on the left of the amino acid instead of default which is right\nfor i in seq.seq:\n    print(i, i.mods) #should print N [HexNAc] on the 3rd amino acid\n```\n\nCustom Annotation Formatting\n\n```python\nfrom sequal.sequence import Sequence\n#Format sequence with custom annotation\nseq = Sequence(\"TENST\")\na = {1:\"tes\", 2:[\"1\", \"200\"]}\nprint(seq.to_string_customize(a, individual_annotation_enclose=False, individual_annotation_separator=\".\"))\n# By supplying .to_string_customize with a dictionary of position on the sequence that you wish to annotate\n# The above would print out TE[tes]N[1.200]ST\n```\n\n### Modification\n\nCreating a Modification Object\n\n```python\nfrom sequal.modification import Modification\n\n# Create a modification object and try to find all its possible positions using regex\nmod = Modification(\"HexNAc\", regex_pattern=\"N[^P][S|T]\")\nfor ps, pe in mod.find_positions(\"TESNEST\"):\n    print(ps, pe)\n    # this should print out the position 3 on the sequence as the start of the match and position 6 as the end of the match\n```\n\n### Generating Modified Sequences\n\nStatic Modification\n\n```python\nfrom sequal.sequence import ModdedSequenceGenerator\nfrom sequal.modification import Modification\n\npropiona = Modification(\"Propionamide\", regex_pattern=\"C\", mod_type=\"static\")\nseq = \"TECSNTT\"\nmods = [propiona]\ng = ModdedSequenceGenerator(seq, static_mods=mods)\nfor i in g.generate():\n    print(i)  # should print {2: [Propionamide]}\n```\n\nVariable Modification\n\n```python\nfrom sequal.sequence import ModdedSequenceGenerator\nfrom sequal.modification import Modification\n\nnsequon = Modification(\"HexNAc\", regex_pattern=\"N[^P][S|T]\", mod_type=\"variable\", labile=True)\nosequon = Modification(\"Mannose\", regex_pattern=\"[S|T]\", mod_type=\"variable\", labile=True)\ncarbox = Modification(\"Carboxylation\", regex_pattern=\"E\", mod_type=\"variable\", labile=True)\n\nseq = \"TECSNTT\"\nmods = [nsequon, osequon, carbox]\ng = ModdedSequenceGenerator(seq, mods, [])\nprint(g.variable_map.mod_position_dict)\n# should print {'HexNAc0': [3], 'Mannose0': [0, 2, 4, 5, 6], 'Carboxylation0': [1]}\n\nfor i in g.generate():\n    print(i)\n    # should print all possible combinations of variable modifications\n```\n\n### Mass spectrometry utilities\n\nGenerating Non-Labile and Labile Ions\n\n```python\nfrom sequal.mass_spectrometry import fragment_non_labile, fragment_labile\nfrom sequal.modification import Modification\nfrom sequal.sequence import ModdedSequenceGenerator, Sequence\n\nnsequon = Modification(\"HexNAc\", regex_pattern=\"N[^P][S|T]\", mod_type=\"variable\", labile=True, labile_number=1, mass=203)\npropiona = Modification(\"Propionamide\", regex_pattern=\"C\", mod_type=\"static\", mass=71)\n\nseq = \"TECSNTT\"\nstatic_mods = [propiona]\nvariable_mods = [nsequon]\n\ng = ModdedSequenceGenerator(seq, variable_mods, static_mods)\nfor i in g.generate():\n    print(i)\n    s = Sequence(seq, mods=i)\n    for b, y in fragment_non_labile(s, \"by\"):\n        print(b, \"b{}\".format(b.fragment_number))\n        print(y, \"y{}\".format(y.fragment_number))\n\ng = ModdedSequenceGenerator(seq, variable_mods, static_mods)\nfor i in g.generate():\n    s = Sequence(seq, mods=i)\n    ion = fragment_labile(s)\n    if ion.has_labile:\n        print(ion, \"Y{}\".format(ion.fragment_number))\n        print(ion.mz_calculate(1))\n```\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Python package for working with protein sequence and PTM",
    "version": "1.0.3",
    "project_urls": null,
    "split_keywords": [
        "protein sequence",
        " modification",
        " mass spectrometry"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0a7b16474c2871d462c0b5dd5ddf04e88355edd522f5d8f1bbc8cbbcdf9db73f",
                "md5": "1eea418498e4efeb5a3f9d23fba7c722",
                "sha256": "b09493b17853433771c586f5ab70c799906bbb7b48031a1c6b7e251923881aaf"
            },
            "downloads": -1,
            "filename": "sequal-1.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1eea418498e4efeb5a3f9d23fba7c722",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 14831,
            "upload_time": "2024-08-02T14:16:54",
            "upload_time_iso_8601": "2024-08-02T14:16:54.256429Z",
            "url": "https://files.pythonhosted.org/packages/0a/7b/16474c2871d462c0b5dd5ddf04e88355edd522f5d8f1bbc8cbbcdf9db73f/sequal-1.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "271536a49fb9541b023b702b0dc033fb60a1f5a27ff8712b47c773186ed5921d",
                "md5": "0b9bb52ac356afb1a7061b25d5dd31e3",
                "sha256": "8674ffae9e2740377718c40b797f5cf3355cd41cbfc6acda759af526ffe1147d"
            },
            "downloads": -1,
            "filename": "sequal-1.0.3.tar.gz",
            "has_sig": false,
            "md5_digest": "0b9bb52ac356afb1a7061b25d5dd31e3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 12990,
            "upload_time": "2024-08-02T14:16:56",
            "upload_time_iso_8601": "2024-08-02T14:16:56.110577Z",
            "url": "https://files.pythonhosted.org/packages/27/15/36a49fb9541b023b702b0dc033fb60a1f5a27ff8712b47c773186ed5921d/sequal-1.0.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-02 14:16:56",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "sequal"
}
        
Elapsed time: 0.28679s