sfmp


Namesfmp JSON
Version 1.0.1 PyPI version JSON
download
home_pagehttps://github.com/psthw/sfmp
SummarySeparate images automatically
upload_time2024-07-14 04:50:37
maintainerNone
docs_urlNone
authorNone
requires_python<4,>=3.5
licenseNone
keywords separate images automatically cluster feature deeplearning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # sfmp (separate for me please)

Sfmp is a tool to quickly separate images using clustering based on features extracted through a convolutional neural network.
It's really lightweight, using only a mobilenetv2 for feature extraction and kmeans for clustering.

## Installation

To install sfmp, follow there steps:

For cpu
```
pip install "sfmp[cpu]"
```

For cuda 11.X
```
pip install "sfmp[gpu]"
```

For cuda 12.X
```
pip install "sfmp[gpu]" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/
```

## Usage

### Command Line Interface

You can use sfmp from the command line by providing a list of globs:

```
sfmp ../examples/*.jpg ../examples2/*.jpg
```

If you want to use CUDA:


```
sfmp ../examples/*.jpg ../examples2/*.jpg --provider CUDAExecutionProvider
```

Check all execution providers [here](https://onnxruntime.ai/docs/execution-providers/).

To specify the number of clusters:

```
sfmp ../examples/*.jpg ../examples2/*.jpg --n_clusters 2
```

or output dir

To specify the number of clusters:

```
sfmp ../examples/*.jpg ../examples2/*.jpg --output_path result
```

### Example

Before
```
.
├── cat.1.jpg
├── cat.2.jpg
├── dog.3061.jpg
└── dog.3062.jpg
```

```
sfmp ../examples/*.jpg --n_clusters 2
```

After

```
├── cluster_0000
│   ├── dog.3061.jpg
│   └── dog.3062.jpg
└── cluster_0001
    ├── cat.1.jpg
    └── cat.2.jpg
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/psthw/sfmp",
    "name": "sfmp",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4,>=3.5",
    "maintainer_email": null,
    "keywords": "separate, images, automatically, cluster, feature, deeplearning",
    "author": null,
    "author_email": null,
    "download_url": null,
    "platform": null,
    "description": "# sfmp (separate for me please)\n\nSfmp is a tool to quickly separate images using clustering based on features extracted through a convolutional neural network.\nIt's really lightweight, using only a mobilenetv2 for feature extraction and kmeans for clustering.\n\n## Installation\n\nTo install sfmp, follow there steps:\n\nFor cpu\n```\npip install \"sfmp[cpu]\"\n```\n\nFor cuda 11.X\n```\npip install \"sfmp[gpu]\"\n```\n\nFor cuda 12.X\n```\npip install \"sfmp[gpu]\" --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/\n```\n\n## Usage\n\n### Command Line Interface\n\nYou can use sfmp from the command line by providing a list of globs:\n\n```\nsfmp ../examples/*.jpg ../examples2/*.jpg\n```\n\nIf you want to use CUDA:\n\n\n```\nsfmp ../examples/*.jpg ../examples2/*.jpg --provider CUDAExecutionProvider\n```\n\nCheck all execution providers [here](https://onnxruntime.ai/docs/execution-providers/).\n\nTo specify the number of clusters:\n\n```\nsfmp ../examples/*.jpg ../examples2/*.jpg --n_clusters 2\n```\n\nor output dir\n\nTo specify the number of clusters:\n\n```\nsfmp ../examples/*.jpg ../examples2/*.jpg --output_path result\n```\n\n### Example\n\nBefore\n```\n.\n\u251c\u2500\u2500 cat.1.jpg\n\u251c\u2500\u2500 cat.2.jpg\n\u251c\u2500\u2500 dog.3061.jpg\n\u2514\u2500\u2500 dog.3062.jpg\n```\n\n```\nsfmp ../examples/*.jpg --n_clusters 2\n```\n\nAfter\n\n```\n\u251c\u2500\u2500 cluster_0000\n\u2502   \u251c\u2500\u2500 dog.3061.jpg\n\u2502   \u2514\u2500\u2500 dog.3062.jpg\n\u2514\u2500\u2500 cluster_0001\n    \u251c\u2500\u2500 cat.1.jpg\n    \u2514\u2500\u2500 cat.2.jpg\n```\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Separate images automatically",
    "version": "1.0.1",
    "project_urls": {
        "Homepage": "https://github.com/psthw/sfmp"
    },
    "split_keywords": [
        "separate",
        " images",
        " automatically",
        " cluster",
        " feature",
        " deeplearning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "767ec9f8129931c2f015549f8f016cf78170dc5d92d16ff7a99972cabde83a50",
                "md5": "dd3860e6f34125c51bd70ca45923d0f3",
                "sha256": "922e9901ec3b06f238511d2342cc299ac7f92b9c840efdac1adfc5ae85b2b0b7"
            },
            "downloads": -1,
            "filename": "sfmp-1.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "dd3860e6f34125c51bd70ca45923d0f3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4,>=3.5",
            "size": 4112886,
            "upload_time": "2024-07-14T04:50:37",
            "upload_time_iso_8601": "2024-07-14T04:50:37.553288Z",
            "url": "https://files.pythonhosted.org/packages/76/7e/c9f8129931c2f015549f8f016cf78170dc5d92d16ff7a99972cabde83a50/sfmp-1.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-14 04:50:37",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "psthw",
    "github_project": "sfmp",
    "github_not_found": true,
    "lcname": "sfmp"
}
        
Elapsed time: 0.24661s