shahmat


Nameshahmat JSON
Version 0.0.5 PyPI version JSON
download
home_pagehttps://ag-algolab.github.io/
SummaryAnalyze your Chess.com games: fetch, stats (hour, Elo diff), and clean visualizations.
upload_time2025-08-30 17:27:27
maintainerNone
docs_urlNone
authorAnthony Gocmen
requires_python>=3.9
licenseMIT
keywords chess chess.com analytics elo visualization data-science
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ShahMat

[![Python](https://img.shields.io/badge/Python-3.9%2B-blue.svg)](https://www.python.org/)  
[![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)

**ShahMat** is a Python package that leverages the official [Chess.com API](https://www.chess.com/news/view/published-data-api) to **fetch, analyze, and visualize your games**.  
It is part of the **AG Algo Lab** initiative: making finance & tech accessible to everyone — and yes, sometimes we have fun applying data science to chess too!

The name *ShahMat* comes from the ancient expression that later gave birth to the word **“checkmate”** :)  

---

## Features

- **Fetch games** directly from Chess.com using a single function
- **Analyze performance (through Visualizations)** by:
  - Hour of the day
  - Elo difference vs opponents
  - Color (White / Black)
  - Result type breakdown (wins, losses, draws)
- **Download**: export your data in a csv file

---

## Quick Start

Install & Use ShahMat:
```bash
pip install ShahMat

chesscom('your_username', start_year=2024)

            

Raw data

            {
    "_id": null,
    "home_page": "https://ag-algolab.github.io/",
    "name": "shahmat",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "chess, chess.com, analytics, elo, visualization, data-science",
    "author": "Anthony Gocmen",
    "author_email": "anthony.gocmen@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/26/7b/64e9a69bdc9374b57a85587de7849c91d9ec9a5b2da1088c7810eb0f82a3/shahmat-0.0.5.tar.gz",
    "platform": null,
    "description": "# ShahMat\r\n\r\n[![Python](https://img.shields.io/badge/Python-3.9%2B-blue.svg)](https://www.python.org/)  \r\n[![License](https://img.shields.io/badge/License-MIT-green.svg)](LICENSE)\r\n\r\n**ShahMat** is a Python package that leverages the official [Chess.com API](https://www.chess.com/news/view/published-data-api) to **fetch, analyze, and visualize your games**.  \r\nIt is part of the **AG Algo Lab** initiative: making finance & tech accessible to everyone \u2014 and yes, sometimes we have fun applying data science to chess too!\r\n\r\nThe name *ShahMat* comes from the ancient expression that later gave birth to the word **\u201ccheckmate\u201d** :)  \r\n\r\n---\r\n\r\n## Features\r\n\r\n- **Fetch games** directly from Chess.com using a single function\r\n- **Analyze performance (through Visualizations)** by:\r\n  - Hour of the day\r\n  - Elo difference vs opponents\r\n  - Color (White / Black)\r\n  - Result type breakdown (wins, losses, draws)\r\n- **Download**: export your data in a csv file\r\n\r\n---\r\n\r\n## Quick Start\r\n\r\nInstall & Use ShahMat:\r\n```bash\r\npip install ShahMat\r\n\r\nchesscom('your_username', start_year=2024)\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Analyze your Chess.com games: fetch, stats (hour, Elo diff), and clean visualizations.",
    "version": "0.0.5",
    "project_urls": {
        "Homepage": "https://ag-algolab.github.io/",
        "Source": "https://github.com/ag-algolab/ShahMat"
    },
    "split_keywords": [
        "chess",
        " chess.com",
        " analytics",
        " elo",
        " visualization",
        " data-science"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7d3c621eaa429c3397663053df6b80635519ee31448a985fa6f7b9d2b5501d2f",
                "md5": "cfd0fa41a52982591c524be3c8abb662",
                "sha256": "29f8b024be8ffb16ce3b37358f72933094b8c765285fad349e8d3ee62e363299"
            },
            "downloads": -1,
            "filename": "shahmat-0.0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cfd0fa41a52982591c524be3c8abb662",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 7649,
            "upload_time": "2025-08-30T17:27:25",
            "upload_time_iso_8601": "2025-08-30T17:27:25.753456Z",
            "url": "https://files.pythonhosted.org/packages/7d/3c/621eaa429c3397663053df6b80635519ee31448a985fa6f7b9d2b5501d2f/shahmat-0.0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "267b64e9a69bdc9374b57a85587de7849c91d9ec9a5b2da1088c7810eb0f82a3",
                "md5": "d5abf6733b736cd290fe11b512f6c19e",
                "sha256": "993b30c0b1f81e62fb02f018db362bf5b7c918715c09e76922bda7649756aa4d"
            },
            "downloads": -1,
            "filename": "shahmat-0.0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "d5abf6733b736cd290fe11b512f6c19e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 8590,
            "upload_time": "2025-08-30T17:27:27",
            "upload_time_iso_8601": "2025-08-30T17:27:27.452200Z",
            "url": "https://files.pythonhosted.org/packages/26/7b/64e9a69bdc9374b57a85587de7849c91d9ec9a5b2da1088c7810eb0f82a3/shahmat-0.0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-30 17:27:27",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ag-algolab",
    "github_project": "ShahMat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "shahmat"
}
        
Elapsed time: 0.42922s