sheet-df


Namesheet-df JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/neo-andrew-moss/sheet_df
SummaryGoogle sheet to dataframe
upload_time2023-06-15 15:27:31
maintainer
docs_urlNone
authorAndrew Moss
requires_python>=3.6
licenseMIT license
keywords sheet_df
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ============
sheet_df
============

Google sheet to dataframe

.. image:: https://img.shields.io/pypi/v/sheet_df?style=for-the-badge
   :target: https://pypi.org/project/sheet_df/

Overview
----------

This Python program connects to the google sheets api and creates a pandas dataframe from the target sheet.

Usage
-----

.. code-block:: python

   df = read_google_sheet_into_dataframe(sheet_id, range_name, credentials_path)

Config
------

You must have `SHEET_ID`` and `RANGE_NAME`` env vars. You will also need a `credentials.json` from google. The `credentials_path`
arg defaults to "credentials.json"

DEV
===

Create venv
-----------

.. code-block:: bash

    python -m venv env

Activate venv
-------------

- unix

.. code-block:: bash

    source env/bin/activate

- windows

.. code-block:: bash

    env\Scripts\activate.bat

Install Packages
----------------

.. code-block:: bash

    pip install -r requirements.txt

Test
----

.. code-block:: bash

    make test

Format
------

.. code-block:: bash

    make format

.. code-block:: bash

    make lint

Version & Release
-----------------

.. code-block:: bash

    make bumpversion part=<major/minor/patch>

.. code-block:: bash

    make release

**note** Don't forget to `git push` with `--tags`

pre-commit
----------

Setup
-----

.. code-block:: bash

    pre-commit install

Run all
-------

.. code-block:: bash

    make pre-commit



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/neo-andrew-moss/sheet_df",
    "name": "sheet-df",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "sheet_df",
    "author": "Andrew Moss",
    "author_email": "andrew.moss@neofinancial.com",
    "download_url": "https://files.pythonhosted.org/packages/17/79/a169c0b087b2afad0d6ac3e0ffc4cdec5745b73e35c0230ee4f9c489cbec/sheet_df-0.0.1.tar.gz",
    "platform": null,
    "description": "============\nsheet_df\n============\n\nGoogle sheet to dataframe\n\n.. image:: https://img.shields.io/pypi/v/sheet_df?style=for-the-badge\n   :target: https://pypi.org/project/sheet_df/\n\nOverview\n----------\n\nThis Python program connects to the google sheets api and creates a pandas dataframe from the target sheet.\n\nUsage\n-----\n\n.. code-block:: python\n\n   df = read_google_sheet_into_dataframe(sheet_id, range_name, credentials_path)\n\nConfig\n------\n\nYou must have `SHEET_ID`` and `RANGE_NAME`` env vars. You will also need a `credentials.json` from google. The `credentials_path`\narg defaults to \"credentials.json\"\n\nDEV\n===\n\nCreate venv\n-----------\n\n.. code-block:: bash\n\n    python -m venv env\n\nActivate venv\n-------------\n\n- unix\n\n.. code-block:: bash\n\n    source env/bin/activate\n\n- windows\n\n.. code-block:: bash\n\n    env\\Scripts\\activate.bat\n\nInstall Packages\n----------------\n\n.. code-block:: bash\n\n    pip install -r requirements.txt\n\nTest\n----\n\n.. code-block:: bash\n\n    make test\n\nFormat\n------\n\n.. code-block:: bash\n\n    make format\n\n.. code-block:: bash\n\n    make lint\n\nVersion & Release\n-----------------\n\n.. code-block:: bash\n\n    make bumpversion part=<major/minor/patch>\n\n.. code-block:: bash\n\n    make release\n\n**note** Don't forget to `git push` with `--tags`\n\npre-commit\n----------\n\nSetup\n-----\n\n.. code-block:: bash\n\n    pre-commit install\n\nRun all\n-------\n\n.. code-block:: bash\n\n    make pre-commit\n\n\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Google sheet to dataframe",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/neo-andrew-moss/sheet_df"
    },
    "split_keywords": [
        "sheet_df"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1779a169c0b087b2afad0d6ac3e0ffc4cdec5745b73e35c0230ee4f9c489cbec",
                "md5": "64e194bda024d037d71164d072540e1d",
                "sha256": "aa24e8de99e2b7d346383f4122f454d8c88e9a84e7eaf25813ccfff1f5e69eb9"
            },
            "downloads": -1,
            "filename": "sheet_df-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "64e194bda024d037d71164d072540e1d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 5360,
            "upload_time": "2023-06-15T15:27:31",
            "upload_time_iso_8601": "2023-06-15T15:27:31.562273Z",
            "url": "https://files.pythonhosted.org/packages/17/79/a169c0b087b2afad0d6ac3e0ffc4cdec5745b73e35c0230ee4f9c489cbec/sheet_df-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-15 15:27:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "neo-andrew-moss",
    "github_project": "sheet_df",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "sheet-df"
}
        
Elapsed time: 0.29052s