[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)
# ShortCircuit
## Install
## Example
```python
import torch
from shortcircuit.main import ShortCircuitNet
# Create an instance of the ShortCircuitNet model with the specified parameters
model = ShortCircuitNet(512, 6, 8, 64, 2048, 0.1)
# Generate a random input tensor of shape (1, 512, 512)
input_tensor = torch.randn(1, 512, 512)
# Pass the input tensor through the model to get the output tensor
output_tensor = model(input_tensor)
# Print the output tensor
print(output_tensor)
```
# Missing
Input Sequence:
Node Hidden
Embeddings
Target Sequence:
Target Hidden
Embedding
# License
MIT
Raw data
{
"_id": null,
"home_page": "https://github.com/kyegomez/ShortCircuit",
"name": "short-circuit-torch",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
"author": "Kye Gomez",
"author_email": "kye@apac.ai",
"download_url": "https://files.pythonhosted.org/packages/b9/cf/790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db/short_circuit_torch-0.0.1.tar.gz",
"platform": null,
"description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n\n# ShortCircuit\n\n\n## Install\n\n\n\n## Example\n\n```python\nimport torch \nfrom shortcircuit.main import ShortCircuitNet\n\n# Create an instance of the ShortCircuitNet model with the specified parameters\nmodel = ShortCircuitNet(512, 6, 8, 64, 2048, 0.1)\n\n# Generate a random input tensor of shape (1, 512, 512)\ninput_tensor = torch.randn(1, 512, 512)\n\n# Pass the input tensor through the model to get the output tensor\noutput_tensor = model(input_tensor)\n\n# Print the output tensor\nprint(output_tensor)\n```\n\n\n\n# Missing\nInput Sequence:\nNode Hidden\nEmbeddings\nTarget Sequence:\nTarget Hidden\nEmbedding\n\n\n# License\nMIT\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Paper - Pytorch",
"version": "0.0.1",
"project_urls": {
"Documentation": "https://github.com/kyegomez/ShortCircuit",
"Homepage": "https://github.com/kyegomez/ShortCircuit",
"Repository": "https://github.com/kyegomez/ShortCircuit"
},
"split_keywords": [
"artificial intelligence",
" deep learning",
" optimizers",
" prompt engineering"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "55ab1e845f4a2a899d5cd122e1a77fb7bfd268eb1410c7cf7025073cc75b0ba9",
"md5": "29b81006e0a56fadb601fe0a28258876",
"sha256": "f7a123a283af24c91ef9df47a7b62b02437509c61dc9218eb909b12d58788242"
},
"downloads": -1,
"filename": "short_circuit_torch-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "29b81006e0a56fadb601fe0a28258876",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 3842,
"upload_time": "2024-08-20T23:56:01",
"upload_time_iso_8601": "2024-08-20T23:56:01.834598Z",
"url": "https://files.pythonhosted.org/packages/55/ab/1e845f4a2a899d5cd122e1a77fb7bfd268eb1410c7cf7025073cc75b0ba9/short_circuit_torch-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b9cf790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db",
"md5": "02f4a3a1e000747cfe086c6fe8cfee2d",
"sha256": "ba2f99c9fd139108017ff0693d7c347be36762636dbe0aed58c66d535afdb68a"
},
"downloads": -1,
"filename": "short_circuit_torch-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "02f4a3a1e000747cfe086c6fe8cfee2d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 3437,
"upload_time": "2024-08-20T23:56:03",
"upload_time_iso_8601": "2024-08-20T23:56:03.424068Z",
"url": "https://files.pythonhosted.org/packages/b9/cf/790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db/short_circuit_torch-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-20 23:56:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "kyegomez",
"github_project": "ShortCircuit",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [
{
"name": "torch",
"specs": []
},
{
"name": "zetascale",
"specs": []
},
{
"name": "einops",
"specs": []
}
],
"lcname": "short-circuit-torch"
}