short-circuit-torch


Nameshort-circuit-torch JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/kyegomez/ShortCircuit
SummaryPaper - Pytorch
upload_time2024-08-20 23:56:03
maintainerNone
docs_urlNone
authorKye Gomez
requires_python<4.0,>=3.10
licenseMIT
keywords artificial intelligence deep learning optimizers prompt engineering
VCS
bugtrack_url
requirements torch zetascale einops
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)


# ShortCircuit


## Install



## Example

```python
import torch 
from shortcircuit.main import ShortCircuitNet

# Create an instance of the ShortCircuitNet model with the specified parameters
model = ShortCircuitNet(512, 6, 8, 64, 2048, 0.1)

# Generate a random input tensor of shape (1, 512, 512)
input_tensor = torch.randn(1, 512, 512)

# Pass the input tensor through the model to get the output tensor
output_tensor = model(input_tensor)

# Print the output tensor
print(output_tensor)
```



# Missing
Input Sequence:
Node Hidden
Embeddings
Target Sequence:
Target Hidden
Embedding


# License
MIT

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kyegomez/ShortCircuit",
    "name": "short-circuit-torch",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "artificial intelligence, deep learning, optimizers, Prompt Engineering",
    "author": "Kye Gomez",
    "author_email": "kye@apac.ai",
    "download_url": "https://files.pythonhosted.org/packages/b9/cf/790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db/short_circuit_torch-0.0.1.tar.gz",
    "platform": null,
    "description": "[![Multi-Modality](agorabanner.png)](https://discord.com/servers/agora-999382051935506503)\n\n\n# ShortCircuit\n\n\n## Install\n\n\n\n## Example\n\n```python\nimport torch \nfrom shortcircuit.main import ShortCircuitNet\n\n# Create an instance of the ShortCircuitNet model with the specified parameters\nmodel = ShortCircuitNet(512, 6, 8, 64, 2048, 0.1)\n\n# Generate a random input tensor of shape (1, 512, 512)\ninput_tensor = torch.randn(1, 512, 512)\n\n# Pass the input tensor through the model to get the output tensor\noutput_tensor = model(input_tensor)\n\n# Print the output tensor\nprint(output_tensor)\n```\n\n\n\n# Missing\nInput Sequence:\nNode Hidden\nEmbeddings\nTarget Sequence:\nTarget Hidden\nEmbedding\n\n\n# License\nMIT\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Paper - Pytorch",
    "version": "0.0.1",
    "project_urls": {
        "Documentation": "https://github.com/kyegomez/ShortCircuit",
        "Homepage": "https://github.com/kyegomez/ShortCircuit",
        "Repository": "https://github.com/kyegomez/ShortCircuit"
    },
    "split_keywords": [
        "artificial intelligence",
        " deep learning",
        " optimizers",
        " prompt engineering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "55ab1e845f4a2a899d5cd122e1a77fb7bfd268eb1410c7cf7025073cc75b0ba9",
                "md5": "29b81006e0a56fadb601fe0a28258876",
                "sha256": "f7a123a283af24c91ef9df47a7b62b02437509c61dc9218eb909b12d58788242"
            },
            "downloads": -1,
            "filename": "short_circuit_torch-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "29b81006e0a56fadb601fe0a28258876",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 3842,
            "upload_time": "2024-08-20T23:56:01",
            "upload_time_iso_8601": "2024-08-20T23:56:01.834598Z",
            "url": "https://files.pythonhosted.org/packages/55/ab/1e845f4a2a899d5cd122e1a77fb7bfd268eb1410c7cf7025073cc75b0ba9/short_circuit_torch-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b9cf790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db",
                "md5": "02f4a3a1e000747cfe086c6fe8cfee2d",
                "sha256": "ba2f99c9fd139108017ff0693d7c347be36762636dbe0aed58c66d535afdb68a"
            },
            "downloads": -1,
            "filename": "short_circuit_torch-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "02f4a3a1e000747cfe086c6fe8cfee2d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 3437,
            "upload_time": "2024-08-20T23:56:03",
            "upload_time_iso_8601": "2024-08-20T23:56:03.424068Z",
            "url": "https://files.pythonhosted.org/packages/b9/cf/790f17fc6ddef1badad60a141ed13766f7251e04fa679ae65daca8cf28db/short_circuit_torch-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-20 23:56:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kyegomez",
    "github_project": "ShortCircuit",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "torch",
            "specs": []
        },
        {
            "name": "zetascale",
            "specs": []
        },
        {
            "name": "einops",
            "specs": []
        }
    ],
    "lcname": "short-circuit-torch"
}
        
Elapsed time: 0.32740s