showy


Nameshowy JSON
Version 0.1.5 PyPI version JSON
download
home_pagehttps://gitlab.com/cerfacs/showy
SummaryHelper for matplotlib subplots.
upload_time2023-03-10 12:35:42
maintainer
docs_urlNone
authorCoopTeam-CERFACS
requires_python>=3.7
license
keywords declarative visualization matplotlib
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# showy


``showy`` is a helper for matplotlib subplots.



## Usage


``showy`` can be used in a script-like manner. 

Let's first define the layout:

```python
layout = {
    "title": "Example",
    "graphs": [
        {
            "curves": [{"var": "sine_10"}],
            "x_var": "time",
            "y_label": "Fifi [mol/m³/s]",
            "x_label": "Time [s]",
            "title": "Sinus of frequency *"
        },
        {
            "curves": [{"var": "sine_30"}],
            "x_var": "time",
            "y_label": "Riri [Hz]",
            "x_label": "Time [s]",
            "title": "Second graph"
        },
        {
            "curves": [
                {
                    "var": "sine_100",
                    "legend": "origin",
                },
                {
                    "var": "sine_100p1",
                    "legend": "shifted",
                }
            ],
            "x_var": "time",
            "y_label": "Loulou [cow/mug]",
            "x_label": "Time [s]",
            "title": "Third graphg"
        }
    ],
    "figure_structure": [3, 1],
    "figure_dpi": 92.6
}
```

Now, let's create dummy data:

```python
import numpy as np

data = dict()
data["time"] = np.linspace(0, 0.1, num=256)

data["sine_10"] = np.cos(data["time"] * 10 * 2 * np.pi)
data["sine_30"] = np.cos(data["time"] * 30 * 2 * np.pi)
data["sine_100"] = np.cos(data["time"] * 100 * 2 * np.pi)
data["sine_100p1"] = 1. + np.cos(data["time"] * 100 * 2 * np.pi)
```

Finally, we just have to display it:

```python
from showy import showy

showy(layout, data)
```


**Tip**: Define the layout in a ``yaml`` or ``json`` file in order to it across applications.

If you define it in a ``yaml`` file, then load it with (need to install [``pyyaml``](https://pypi.org/project/PyYAML/):

```python
import yaml

with open(filename, 'r') as file:
  layout = yaml.load(file, Loader=yaml.SafeLoader)
```

If you define it in a ``json`` file, then load it with:

```python
import json

with open(filename, 'r') as file:
  layout = json.load(filename)

```



### Using wildcard `*`

A neat feature of ``showy`` is the wild card usage to simplify layout creation. For example, if you have 3 variables called ``var_1``, ``var_2``, ``var_3``, you only need to define the graph layout for a variable ``var_*``.

The example above reduces to:


```python
layout = {
    "title": "Example",
    "graphs": [{
        "curves": [{"var": "sine_*"}],
        "x_var": "time",
        "y_label": "Sine [mol/m³/s]",
        "x_label": "Time [s]",
        "title": "Sinus of frequency *"
    }],
    "figure_structure": [3, 3],
    "figure_dpi": 92.6
}
```


## json-schema standard

``showy`` is based on a json-schema standard defined [here](https://gitlab.com/cerfacs/showy/raw/master/src/showy/schema.yaml). Check [this](https://cerfacs.fr/coop/json-schema-for-sci-apps) out to learn more about the usage of the json-schema standard. (For your daily usage of ``showy`` you just need to ensure your layout respects the schema)




            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.com/cerfacs/showy",
    "name": "showy",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "declarative visualization,matplotlib",
    "author": "CoopTeam-CERFACS",
    "author_email": "coop@cerfacs.com",
    "download_url": "https://files.pythonhosted.org/packages/56/81/f254a5921274f8d48705aba77dde4ecb471f5d42085cc744225848130d8a/showy-0.1.5.tar.gz",
    "platform": null,
    "description": "\n# showy\n\n\n``showy`` is a helper for matplotlib subplots.\n\n\n\n## Usage\n\n\n``showy`` can be used in a script-like manner. \n\nLet's first define the layout:\n\n```python\nlayout = {\n    \"title\": \"Example\",\n    \"graphs\": [\n        {\n            \"curves\": [{\"var\": \"sine_10\"}],\n            \"x_var\": \"time\",\n            \"y_label\": \"Fifi [mol/m\u00b3/s]\",\n            \"x_label\": \"Time [s]\",\n            \"title\": \"Sinus of frequency *\"\n        },\n        {\n            \"curves\": [{\"var\": \"sine_30\"}],\n            \"x_var\": \"time\",\n            \"y_label\": \"Riri [Hz]\",\n            \"x_label\": \"Time [s]\",\n            \"title\": \"Second graph\"\n        },\n        {\n            \"curves\": [\n                {\n                    \"var\": \"sine_100\",\n                    \"legend\": \"origin\",\n                },\n                {\n                    \"var\": \"sine_100p1\",\n                    \"legend\": \"shifted\",\n                }\n            ],\n            \"x_var\": \"time\",\n            \"y_label\": \"Loulou [cow/mug]\",\n            \"x_label\": \"Time [s]\",\n            \"title\": \"Third graphg\"\n        }\n    ],\n    \"figure_structure\": [3, 1],\n    \"figure_dpi\": 92.6\n}\n```\n\nNow, let's create dummy data:\n\n```python\nimport numpy as np\n\ndata = dict()\ndata[\"time\"] = np.linspace(0, 0.1, num=256)\n\ndata[\"sine_10\"] = np.cos(data[\"time\"] * 10 * 2 * np.pi)\ndata[\"sine_30\"] = np.cos(data[\"time\"] * 30 * 2 * np.pi)\ndata[\"sine_100\"] = np.cos(data[\"time\"] * 100 * 2 * np.pi)\ndata[\"sine_100p1\"] = 1. + np.cos(data[\"time\"] * 100 * 2 * np.pi)\n```\n\nFinally, we just have to display it:\n\n```python\nfrom showy import showy\n\nshowy(layout, data)\n```\n\n\n**Tip**: Define the layout in a ``yaml`` or ``json`` file in order to it across applications.\n\nIf you define it in a ``yaml`` file, then load it with (need to install [``pyyaml``](https://pypi.org/project/PyYAML/):\n\n```python\nimport yaml\n\nwith open(filename, 'r') as file:\n  layout = yaml.load(file, Loader=yaml.SafeLoader)\n```\n\nIf you define it in a ``json`` file, then load it with:\n\n```python\nimport json\n\nwith open(filename, 'r') as file:\n  layout = json.load(filename)\n\n```\n\n\n\n### Using wildcard `*`\n\nA neat feature of ``showy`` is the wild card usage to simplify layout creation. For example, if you have 3 variables called ``var_1``, ``var_2``, ``var_3``, you only need to define the graph layout for a variable ``var_*``.\n\nThe example above reduces to:\n\n\n```python\nlayout = {\n    \"title\": \"Example\",\n    \"graphs\": [{\n        \"curves\": [{\"var\": \"sine_*\"}],\n        \"x_var\": \"time\",\n        \"y_label\": \"Sine [mol/m\u00b3/s]\",\n        \"x_label\": \"Time [s]\",\n        \"title\": \"Sinus of frequency *\"\n    }],\n    \"figure_structure\": [3, 3],\n    \"figure_dpi\": 92.6\n}\n```\n\n\n## json-schema standard\n\n``showy`` is based on a json-schema standard defined [here](https://gitlab.com/cerfacs/showy/raw/master/src/showy/schema.yaml). Check [this](https://cerfacs.fr/coop/json-schema-for-sci-apps) out to learn more about the usage of the json-schema standard. (For your daily usage of ``showy`` you just need to ensure your layout respects the schema)\n\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Helper for matplotlib subplots.",
    "version": "0.1.5",
    "split_keywords": [
        "declarative visualization",
        "matplotlib"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a0de56f43ec5ecc87584df0faf915f14f68c46fb7927a72d0069083be37f2680",
                "md5": "fcd37772d4ea8e8789e14c71941de08e",
                "sha256": "6c60c3fa7d7d1af31e18e76cabc2e24dd8dd44b7aa377d422494334d75af6277"
            },
            "downloads": -1,
            "filename": "showy-0.1.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fcd37772d4ea8e8789e14c71941de08e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 7744,
            "upload_time": "2023-03-10T12:35:40",
            "upload_time_iso_8601": "2023-03-10T12:35:40.404178Z",
            "url": "https://files.pythonhosted.org/packages/a0/de/56f43ec5ecc87584df0faf915f14f68c46fb7927a72d0069083be37f2680/showy-0.1.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5681f254a5921274f8d48705aba77dde4ecb471f5d42085cc744225848130d8a",
                "md5": "046466da6414b945a595621c929d4912",
                "sha256": "aa0f7dbb9304ebf7bbd10c8f6db801ba1f4ff7cd722367ead07552e9bebbc724"
            },
            "downloads": -1,
            "filename": "showy-0.1.5.tar.gz",
            "has_sig": false,
            "md5_digest": "046466da6414b945a595621c929d4912",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8173,
            "upload_time": "2023-03-10T12:35:42",
            "upload_time_iso_8601": "2023-03-10T12:35:42.743839Z",
            "url": "https://files.pythonhosted.org/packages/56/81/f254a5921274f8d48705aba77dde4ecb471f5d42085cc744225848130d8a/showy-0.1.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-10 12:35:42",
    "github": false,
    "gitlab": true,
    "bitbucket": false,
    "gitlab_user": "cerfacs",
    "gitlab_project": "showy",
    "lcname": "showy"
}
        
Elapsed time: 0.06811s