Name | sibila JSON |
Version |
0.4.5
JSON |
| download |
home_page | None |
Summary | Structured queries from local or online LLM models |
upload_time | 2024-06-21 16:11:02 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
llama.cpp
ai
transformers
gpt
llm
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Sibila
Extract structured data from remote or local LLM models. Predictable output is important for serious use of LLMs.
- Query structured data into Pydantic objects, dataclasses or simple types.
- Access remote models from OpenAI, Anthropic, Mistral AI and other providers.
- Use vision models like GPT-4o, to extract structured data from images.
- Run local models like Llama-3, Phi-3, OpenChat or any other GGUF file model.
- Sibila is also a general purpose model access library, to generate plain text or free JSON results, with the same API for local and remote models.
No matter how well you craft a prompt begging a model for the format you need, it can always respond something else. Extracting structured data can be a big step into getting predictable behavior from your models.
See [What can you do with Sibila?](https://jndiogo.github.io/sibila/what/)
## Structured data
To extract structured data, using a local model:
``` python
from sibila import Models
from pydantic import BaseModel
class Info(BaseModel):
event_year: int
first_name: str
last_name: str
age_at_the_time: int
nationality: str
model = Models.create("llamacpp:openchat")
model.extract(Info, "Who was the first man in the moon?")
```
Returns an instance of class Info, created from the model's output:
``` python
Info(event_year=1969,
first_name='Neil',
last_name='Armstrong',
age_at_the_time=38,
nationality='American')
```
Or to use a remote model like OpenAI's GPT-4, we would simply replace the model's name:
``` python
model = Models.create("openai:gpt-4")
model.extract(Info, "Who was the first man in the moon?")
```
If Pydantic BaseModel objects are too much for your project, Sibila supports similar functionality with Python dataclasses. Also includes asynchronous access to remote models.
## Vision models
Sibila supports image input, alongside text prompts. For example, to extract the fields from a receipt in a photo:
![Image](https://upload.wikimedia.org/wikipedia/commons/6/6a/Receipts_in_Italy_13.jpg)
``` python
from pydantic import Field
model = Models.create("openai:gpt-4o")
class ReceiptLine(BaseModel):
"""Receipt line data"""
description: str
cost: float
class Receipt(BaseModel):
"""Receipt information"""
total: float = Field(description="Total value")
lines: list[ReceiptLine] = Field(description="List of lines of paid items")
info = model.extract(Receipt,
("Extract receipt information.",
"https://upload.wikimedia.org/wikipedia/commons/6/6a/Receipts_in_Italy_13.jpg"))
info
```
Returns receipt fields structured in a Pydantic object:
```
Receipt(total=5.88,
lines=[ReceiptLine(description='BIS BORSE TERM.S', cost=3.9),
ReceiptLine(description='GHIACCIO 2X400 G', cost=0.99),
ReceiptLine(description='GHIACCIO 2X400 G', cost=0.99)])
```
Another example - extracting the most import elements in a photo:
![Image](https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg/640px-Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg)
``` python
photo = "https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg/640px-Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg"
model.extract(list[str],
("Extract up to five of the most important elements in this photo.",
photo))
```
Returns a list with the five strings:
```
['House with red roof and beige walls',
'Large tree with green leaves',
'Garden with various plants and flowers',
'Clear blue sky',
'Wooden fence']
```
Local vision models based on llama.cpp/llava can also be used.
⭐ Like our work? [Give us a star!](https://github.com/jndiogo/sibila)
## Docs
[The docs explain](https://jndiogo.github.io/sibila/) the main concepts, include examples and an API reference.
## Installation
Sibila can be installed from PyPI by doing:
```
pip install -U sibila
```
See [Getting started](https://jndiogo.github.io/sibila/installing/) for more information.
## Examples
The [Examples](https://jndiogo.github.io/sibila/examples/) show what you can do with local or remote models in Sibila: structured data extraction, classification, summarization, etc.
## License
This project is licensed under the MIT License - see the [LICENSE](https://github.com/jndiogo/sibila/blob/main/LICENSE) file for details.
## Acknowledgements
Sibila wouldn't be be possible without the help of great software and people:
- [llama.cpp](https://github.com/ggerganov/llama.cpp)
- [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
- [Hugging Face model hub](https://huggingface.co/) and [TheBloke (Tom Jobbins)](https://huggingface.co/TheBloke)
Thank you!
## Sibila?
Sibila is the Portuguese word for Sibyl. [The Sibyls](https://en.wikipedia.org/wiki/Sibyl) were wise oracular women in ancient Greece. Their mysterious words puzzled people throughout the centuries, providing insight or prophetic predictions, "uttering things not to be laughed at".
![Michelangelo's Delphic Sibyl, Sistine Chapel ceiling](https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/DelphicSibylByMichelangelo.jpg/471px-DelphicSibylByMichelangelo.jpg)
Michelangelo's Delphic Sibyl, in the Sistine Chapel ceiling.
Raw data
{
"_id": null,
"home_page": null,
"name": "sibila",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "llama.cpp, AI, Transformers, GPT, LLM",
"author": null,
"author_email": "Jorge Diogo <jndiogo@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/b2/02/a25c788e08f926a9d4a441c2a1c605316581314f4f53d958f95a1b6c3001/sibila-0.4.5.tar.gz",
"platform": null,
"description": "# Sibila\n\nExtract structured data from remote or local LLM models. Predictable output is important for serious use of LLMs.\n\n- Query structured data into Pydantic objects, dataclasses or simple types.\n- Access remote models from OpenAI, Anthropic, Mistral AI and other providers.\n- Use vision models like GPT-4o, to extract structured data from images.\n- Run local models like Llama-3, Phi-3, OpenChat or any other GGUF file model.\n- Sibila is also a general purpose model access library, to generate plain text or free JSON results, with the same API for local and remote models.\n\nNo matter how well you craft a prompt begging a model for the format you need, it can always respond something else. Extracting structured data can be a big step into getting predictable behavior from your models.\n\nSee [What can you do with Sibila?](https://jndiogo.github.io/sibila/what/)\n\n\n## Structured data\n\nTo extract structured data, using a local model:\n\n``` python\nfrom sibila import Models\nfrom pydantic import BaseModel\n\nclass Info(BaseModel):\n event_year: int\n first_name: str\n last_name: str\n age_at_the_time: int\n nationality: str\n\nmodel = Models.create(\"llamacpp:openchat\")\n\nmodel.extract(Info, \"Who was the first man in the moon?\")\n```\n\nReturns an instance of class Info, created from the model's output:\n\n``` python\nInfo(event_year=1969,\n first_name='Neil',\n last_name='Armstrong',\n age_at_the_time=38,\n nationality='American')\n```\n\nOr to use a remote model like OpenAI's GPT-4, we would simply replace the model's name:\n\n``` python\nmodel = Models.create(\"openai:gpt-4\")\n\nmodel.extract(Info, \"Who was the first man in the moon?\")\n```\n\nIf Pydantic BaseModel objects are too much for your project, Sibila supports similar functionality with Python dataclasses. Also includes asynchronous access to remote models.\n\n\n## Vision models\n\nSibila supports image input, alongside text prompts. For example, to extract the fields from a receipt in a photo:\n\n![Image](https://upload.wikimedia.org/wikipedia/commons/6/6a/Receipts_in_Italy_13.jpg)\n\n``` python\nfrom pydantic import Field\n\nmodel = Models.create(\"openai:gpt-4o\")\n\nclass ReceiptLine(BaseModel):\n \"\"\"Receipt line data\"\"\"\n description: str\n cost: float\n\nclass Receipt(BaseModel):\n \"\"\"Receipt information\"\"\"\n total: float = Field(description=\"Total value\")\n lines: list[ReceiptLine] = Field(description=\"List of lines of paid items\")\n\ninfo = model.extract(Receipt,\n (\"Extract receipt information.\", \n \"https://upload.wikimedia.org/wikipedia/commons/6/6a/Receipts_in_Italy_13.jpg\"))\ninfo\n```\n\nReturns receipt fields structured in a Pydantic object:\n\n```\nReceipt(total=5.88, \n lines=[ReceiptLine(description='BIS BORSE TERM.S', cost=3.9), \n ReceiptLine(description='GHIACCIO 2X400 G', cost=0.99),\n ReceiptLine(description='GHIACCIO 2X400 G', cost=0.99)])\n```\n\n\nAnother example - extracting the most import elements in a photo:\n\n![Image](https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg/640px-Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg)\n\n``` python\nphoto = \"https://upload.wikimedia.org/wikipedia/commons/thumb/3/32/Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg/640px-Hohenloher_Freilandmuseum_-_Baugruppe_Hohenloher_Dorf_-_Bauerngarten_-_Ansicht_von_Osten_im_Juni.jpg\"\n\nmodel.extract(list[str],\n (\"Extract up to five of the most important elements in this photo.\",\n photo))\n```\n\nReturns a list with the five strings:\n\n```\n['House with red roof and beige walls',\n 'Large tree with green leaves',\n 'Garden with various plants and flowers',\n 'Clear blue sky',\n 'Wooden fence']\n```\n\n\nLocal vision models based on llama.cpp/llava can also be used.\n\n\u2b50 Like our work? [Give us a star!](https://github.com/jndiogo/sibila)\n\n\n## Docs\n\n[The docs explain](https://jndiogo.github.io/sibila/) the main concepts, include examples and an API reference.\n\n\n## Installation\n\nSibila can be installed from PyPI by doing:\n\n```\npip install -U sibila\n```\n\nSee [Getting started](https://jndiogo.github.io/sibila/installing/) for more information.\n\n\n\n## Examples\n\nThe [Examples](https://jndiogo.github.io/sibila/examples/) show what you can do with local or remote models in Sibila: structured data extraction, classification, summarization, etc.\n\n\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](https://github.com/jndiogo/sibila/blob/main/LICENSE) file for details.\n\n\n## Acknowledgements\n\nSibila wouldn't be be possible without the help of great software and people:\n\n- [llama.cpp](https://github.com/ggerganov/llama.cpp)\n- [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)\n- [Hugging Face model hub](https://huggingface.co/) and [TheBloke (Tom Jobbins)](https://huggingface.co/TheBloke)\n\nThank you!\n\n\n## Sibila?\n\nSibila is the Portuguese word for Sibyl. [The Sibyls](https://en.wikipedia.org/wiki/Sibyl) were wise oracular women in ancient Greece. Their mysterious words puzzled people throughout the centuries, providing insight or prophetic predictions, \"uttering things not to be laughed at\".\n\n![Michelangelo's Delphic Sibyl, Sistine Chapel ceiling](https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/DelphicSibylByMichelangelo.jpg/471px-DelphicSibylByMichelangelo.jpg)\n\nMichelangelo's Delphic Sibyl, in the Sistine Chapel ceiling.\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Structured queries from local or online LLM models",
"version": "0.4.5",
"project_urls": {
"Documentation": "https://jndiogo.github.io/sibila",
"Homepage": "https://github.com/jndiogo/sibila",
"Issues": "https://github.com/jndiogo/sibila/issues"
},
"split_keywords": [
"llama.cpp",
" ai",
" transformers",
" gpt",
" llm"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "389678b1d2e4b72faeb5fed34acd3beaa113cf7f214598d8d940dce934e38d25",
"md5": "341e4441b5aa4f004b11fe77da717207",
"sha256": "9072f74ce7d07a0c4fe67a9ee1e41c96b2417c3ec5b34b6196ddaf4ba16f0363"
},
"downloads": -1,
"filename": "sibila-0.4.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "341e4441b5aa4f004b11fe77da717207",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 97266,
"upload_time": "2024-06-21T16:11:00",
"upload_time_iso_8601": "2024-06-21T16:11:00.513293Z",
"url": "https://files.pythonhosted.org/packages/38/96/78b1d2e4b72faeb5fed34acd3beaa113cf7f214598d8d940dce934e38d25/sibila-0.4.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b202a25c788e08f926a9d4a441c2a1c605316581314f4f53d958f95a1b6c3001",
"md5": "dd4288a5cd462f00ce585ae324c3f886",
"sha256": "9c1d1cb78f64ddc48797040cc912fc575344851936c1ca501b66ef76d7d1f823"
},
"downloads": -1,
"filename": "sibila-0.4.5.tar.gz",
"has_sig": false,
"md5_digest": "dd4288a5cd462f00ce585ae324c3f886",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 169094,
"upload_time": "2024-06-21T16:11:02",
"upload_time_iso_8601": "2024-06-21T16:11:02.562647Z",
"url": "https://files.pythonhosted.org/packages/b2/02/a25c788e08f926a9d4a441c2a1c605316581314f4f53d958f95a1b6c3001/sibila-0.4.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-21 16:11:02",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "jndiogo",
"github_project": "sibila",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "sibila"
}