sigmap


Namesigmap JSON
Version 1.1.2 PyPI version JSON
download
home_pageNone
SummarySigmaP: Python package for predicting sigma70 promoter in Escherichia coli K-12
upload_time2025-01-11 07:42:31
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseNone
keywords analysis bacteria bioinformatics genetics machine-learning promoter python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SigmaP
Python package for Sigma70 promoter Prediction. This package used Sigma70Pred [(Patiyal et al. 2022)](https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1042127/full).

### Installation
This package can be installed by pip.
```python
pip install sigmap
```

### How to use
First, prepare fasta file containing DNA sequence. Minimum length for prediction is 81nt. Then, calculate probability score by `SigmaFactor`. Run prediction model by `.predict` method. Results will be returned as `pd.DataFrame`.
```python
from sigmap import SigmaFactor

sigma = SigmaFactor()

df_out = sigma.predict('tutorial/example_seq.fa')
```

| ID      | Sequence                                          | Score             | Prediction   |
| ------- | ------------------------------------------------- | ----------------- | ------------ |
| \>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145             | Non-Promoter |
| \>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478             | Promoter     |
| \>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692             | Promoter     |
| \>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216             | Non-Promoter |
| \>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162             | Non-Promoter |
| \>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418             | Promoter     |


The input type for sigmap can also be a `pd.DataFrame`. If you want to convert a FASTA file into a DataFrame, you can use the `fasta2df` function.

```python
from sigmap import fasta2df

df_seq = fasta2df('tutorial/example_seq.fa')
```

| Sequence_ID | Sequence                                          |
| ----------- | ------------------------------------------------- |
| \>Seq_1     | TAGCACGACGATAATATAAACGCAGCAA                      |
| \>Seq_2     | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... |
| \>Seq_3     | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... |
| \>Seq_4     | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... |
| \>Seq_5     | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... |
| \>Seq_6     | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... |


If the `DataFrame` contains data with ID and sequence columns, you can directly use it as input for `SigmaFactor`.

```python
sigma = SigmaFactor()

# input type: pd.DataFrame
df_out = sigma.predict(df_seq)
```

| ID      | Sequence                                          | Score             | Prediction   |
| ------- | ------------------------------------------------- | ----------------- | ------------ |
| \>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145             | Non-Promoter |
| \>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478             | Promoter     |
| \>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692             | Promoter     |
| \>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216             | Non-Promoter |
| \>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162             | Non-Promoter |
| \>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418             | Promoter     |



Contact: Goosang Yu (gsyu93@gmail.com)
            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "sigmap",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "analysis, bacteria, bioinformatics, genetics, machine-learning, promoter, python",
    "author": null,
    "author_email": "Goosang Yu <gsyu93@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/e3/1b/1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b/sigmap-1.1.2.tar.gz",
    "platform": null,
    "description": "# SigmaP\nPython package for Sigma70 promoter Prediction. This package used Sigma70Pred [(Patiyal et al. 2022)](https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1042127/full).\n\n### Installation\nThis package can be installed by pip.\n```python\npip install sigmap\n```\n\n### How to use\nFirst, prepare fasta file containing DNA sequence. Minimum length for prediction is 81nt. Then, calculate probability score by `SigmaFactor`. Run prediction model by `.predict` method. Results will be returned as `pd.DataFrame`.\n```python\nfrom sigmap import SigmaFactor\n\nsigma = SigmaFactor()\n\ndf_out = sigma.predict('tutorial/example_seq.fa')\n```\n\n| ID      | Sequence                                          | Score             | Prediction   |\n| ------- | ------------------------------------------------- | ----------------- | ------------ |\n| \\>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145             | Non-Promoter |\n| \\>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478             | Promoter     |\n| \\>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692             | Promoter     |\n| \\>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216             | Non-Promoter |\n| \\>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162             | Non-Promoter |\n| \\>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418             | Promoter     |\n\n\nThe input type for sigmap can also be a `pd.DataFrame`. If you want to convert a FASTA file into a DataFrame, you can use the `fasta2df` function.\n\n```python\nfrom sigmap import fasta2df\n\ndf_seq = fasta2df('tutorial/example_seq.fa')\n```\n\n| Sequence_ID | Sequence                                          |\n| ----------- | ------------------------------------------------- |\n| \\>Seq_1     | TAGCACGACGATAATATAAACGCAGCAA                      |\n| \\>Seq_2     | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... |\n| \\>Seq_3     | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... |\n| \\>Seq_4     | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... |\n| \\>Seq_5     | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... |\n| \\>Seq_6     | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... |\n\n\nIf the `DataFrame` contains data with ID and sequence columns, you can directly use it as input for `SigmaFactor`.\n\n```python\nsigma = SigmaFactor()\n\n# input type: pd.DataFrame\ndf_out = sigma.predict(df_seq)\n```\n\n| ID      | Sequence                                          | Score             | Prediction   |\n| ------- | ------------------------------------------------- | ----------------- | ------------ |\n| \\>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145             | Non-Promoter |\n| \\>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478             | Promoter     |\n| \\>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692             | Promoter     |\n| \\>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216             | Non-Promoter |\n| \\>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162             | Non-Promoter |\n| \\>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418             | Promoter     |\n\n\n\nContact: Goosang Yu (gsyu93@gmail.com)",
    "bugtrack_url": null,
    "license": null,
    "summary": "SigmaP: Python package for predicting sigma70 promoter in Escherichia coli K-12",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/Goosang-Yu/sigmap",
        "Repository": "https://github.com/Goosang-Yu/sigmap",
        "Source": "https://github.com/Goosang-Yu/sigmap",
        "Tracker": "https://github.com/Goosang-Yu/sigmap/issues"
    },
    "split_keywords": [
        "analysis",
        " bacteria",
        " bioinformatics",
        " genetics",
        " machine-learning",
        " promoter",
        " python"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "50c2c21788cedd421aba5173a732714ebf5e7816fafa976ccc413b6e8407cc61",
                "md5": "6dac5f60281cc952e8bb869a646afe86",
                "sha256": "282473d87517055fb6997567060eb00347f66139ce0106e41fbfee188bdda9e5"
            },
            "downloads": -1,
            "filename": "sigmap-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6dac5f60281cc952e8bb869a646afe86",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 256237,
            "upload_time": "2025-01-11T07:42:27",
            "upload_time_iso_8601": "2025-01-11T07:42:27.817686Z",
            "url": "https://files.pythonhosted.org/packages/50/c2/c21788cedd421aba5173a732714ebf5e7816fafa976ccc413b6e8407cc61/sigmap-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "e31b1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b",
                "md5": "260fbbe45d9d0df0fe05b1650f00605b",
                "sha256": "f9b591f46237f5427966936cf8e7ab176628678508f9b81c98cc8cf80bea32a0"
            },
            "downloads": -1,
            "filename": "sigmap-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "260fbbe45d9d0df0fe05b1650f00605b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 247297,
            "upload_time": "2025-01-11T07:42:31",
            "upload_time_iso_8601": "2025-01-11T07:42:31.315758Z",
            "url": "https://files.pythonhosted.org/packages/e3/1b/1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b/sigmap-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-11 07:42:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Goosang-Yu",
    "github_project": "sigmap",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "sigmap"
}
        
Elapsed time: 0.96171s