# SigmaP
Python package for Sigma70 promoter Prediction. This package used Sigma70Pred [(Patiyal et al. 2022)](https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1042127/full).
### Installation
This package can be installed by pip.
```python
pip install sigmap
```
### How to use
First, prepare fasta file containing DNA sequence. Minimum length for prediction is 81nt. Then, calculate probability score by `SigmaFactor`. Run prediction model by `.predict` method. Results will be returned as `pd.DataFrame`.
```python
from sigmap import SigmaFactor
sigma = SigmaFactor()
df_out = sigma.predict('tutorial/example_seq.fa')
```
| ID | Sequence | Score | Prediction |
| ------- | ------------------------------------------------- | ----------------- | ------------ |
| \>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145 | Non-Promoter |
| \>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478 | Promoter |
| \>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692 | Promoter |
| \>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216 | Non-Promoter |
| \>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162 | Non-Promoter |
| \>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418 | Promoter |
The input type for sigmap can also be a `pd.DataFrame`. If you want to convert a FASTA file into a DataFrame, you can use the `fasta2df` function.
```python
from sigmap import fasta2df
df_seq = fasta2df('tutorial/example_seq.fa')
```
| Sequence_ID | Sequence |
| ----------- | ------------------------------------------------- |
| \>Seq_1 | TAGCACGACGATAATATAAACGCAGCAA |
| \>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... |
| \>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... |
| \>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... |
| \>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... |
| \>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... |
If the `DataFrame` contains data with ID and sequence columns, you can directly use it as input for `SigmaFactor`.
```python
sigma = SigmaFactor()
# input type: pd.DataFrame
df_out = sigma.predict(df_seq)
```
| ID | Sequence | Score | Prediction |
| ------- | ------------------------------------------------- | ----------------- | ------------ |
| \>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145 | Non-Promoter |
| \>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478 | Promoter |
| \>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692 | Promoter |
| \>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216 | Non-Promoter |
| \>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162 | Non-Promoter |
| \>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418 | Promoter |
Contact: Goosang Yu (gsyu93@gmail.com)
Raw data
{
"_id": null,
"home_page": null,
"name": "sigmap",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "analysis, bacteria, bioinformatics, genetics, machine-learning, promoter, python",
"author": null,
"author_email": "Goosang Yu <gsyu93@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/e3/1b/1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b/sigmap-1.1.2.tar.gz",
"platform": null,
"description": "# SigmaP\nPython package for Sigma70 promoter Prediction. This package used Sigma70Pred [(Patiyal et al. 2022)](https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2022.1042127/full).\n\n### Installation\nThis package can be installed by pip.\n```python\npip install sigmap\n```\n\n### How to use\nFirst, prepare fasta file containing DNA sequence. Minimum length for prediction is 81nt. Then, calculate probability score by `SigmaFactor`. Run prediction model by `.predict` method. Results will be returned as `pd.DataFrame`.\n```python\nfrom sigmap import SigmaFactor\n\nsigma = SigmaFactor()\n\ndf_out = sigma.predict('tutorial/example_seq.fa')\n```\n\n| ID | Sequence | Score | Prediction |\n| ------- | ------------------------------------------------- | ----------------- | ------------ |\n| \\>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145 | Non-Promoter |\n| \\>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478 | Promoter |\n| \\>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692 | Promoter |\n| \\>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216 | Non-Promoter |\n| \\>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162 | Non-Promoter |\n| \\>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418 | Promoter |\n\n\nThe input type for sigmap can also be a `pd.DataFrame`. If you want to convert a FASTA file into a DataFrame, you can use the `fasta2df` function.\n\n```python\nfrom sigmap import fasta2df\n\ndf_seq = fasta2df('tutorial/example_seq.fa')\n```\n\n| Sequence_ID | Sequence |\n| ----------- | ------------------------------------------------- |\n| \\>Seq_1 | TAGCACGACGATAATATAAACGCAGCAA |\n| \\>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... |\n| \\>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... |\n| \\>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... |\n| \\>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... |\n| \\>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... |\n\n\nIf the `DataFrame` contains data with ID and sequence columns, you can directly use it as input for `SigmaFactor`.\n\n```python\nsigma = SigmaFactor()\n\n# input type: pd.DataFrame\ndf_out = sigma.predict(df_seq)\n```\n\n| ID | Sequence | Score | Prediction |\n| ------- | ------------------------------------------------- | ----------------- | ------------ |\n| \\>Seq_1 | TAGCACGACGATAATATAAACGCAGCAAAAAAAAAAAAAAAAAAAA... | 0.145 | Non-Promoter |\n| \\>Seq_2 | AGCTTGCGTCAATGGGCAAGGTGGGCTTGCATTTGCTTAATAGAAA... | 0.478 | Promoter |\n| \\>Seq_3 | TCGTTTTATTTCTTTTTTCTCCATTGAACTTTCAGTTTCTTTTCTA... | 0.692 | Promoter |\n| \\>Seq_4 | CGCAGCGGGTTTACCCTCTGACCGTTTCTGTTACGAAGGCTTTTTA... | 0.216 | Non-Promoter |\n| \\>Seq_5 | TGCTGCTTGGTCTGTGGGTTGCCGCACAGGTTGCCGGTTCCACCAA... | 0.162 | Non-Promoter |\n| \\>Seq_6 | GAATCCAACTAATGTTGTAAACTGGCAAGGTAATGTCATTAGTCAT... | 0.418 | Promoter |\n\n\n\nContact: Goosang Yu (gsyu93@gmail.com)",
"bugtrack_url": null,
"license": null,
"summary": "SigmaP: Python package for predicting sigma70 promoter in Escherichia coli K-12",
"version": "1.1.2",
"project_urls": {
"Homepage": "https://github.com/Goosang-Yu/sigmap",
"Repository": "https://github.com/Goosang-Yu/sigmap",
"Source": "https://github.com/Goosang-Yu/sigmap",
"Tracker": "https://github.com/Goosang-Yu/sigmap/issues"
},
"split_keywords": [
"analysis",
" bacteria",
" bioinformatics",
" genetics",
" machine-learning",
" promoter",
" python"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "50c2c21788cedd421aba5173a732714ebf5e7816fafa976ccc413b6e8407cc61",
"md5": "6dac5f60281cc952e8bb869a646afe86",
"sha256": "282473d87517055fb6997567060eb00347f66139ce0106e41fbfee188bdda9e5"
},
"downloads": -1,
"filename": "sigmap-1.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "6dac5f60281cc952e8bb869a646afe86",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 256237,
"upload_time": "2025-01-11T07:42:27",
"upload_time_iso_8601": "2025-01-11T07:42:27.817686Z",
"url": "https://files.pythonhosted.org/packages/50/c2/c21788cedd421aba5173a732714ebf5e7816fafa976ccc413b6e8407cc61/sigmap-1.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "e31b1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b",
"md5": "260fbbe45d9d0df0fe05b1650f00605b",
"sha256": "f9b591f46237f5427966936cf8e7ab176628678508f9b81c98cc8cf80bea32a0"
},
"downloads": -1,
"filename": "sigmap-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "260fbbe45d9d0df0fe05b1650f00605b",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 247297,
"upload_time": "2025-01-11T07:42:31",
"upload_time_iso_8601": "2025-01-11T07:42:31.315758Z",
"url": "https://files.pythonhosted.org/packages/e3/1b/1d9c41115513604f5f431e9da1a3af699d899695509d0180a167de35ce4b/sigmap-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-11 07:42:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Goosang-Yu",
"github_project": "sigmap",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "sigmap"
}