sigpro


Namesigpro JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/sintel-dev/SigPro
SummarySignal Processing Tools for Machine Mearning
upload_time2024-04-24 16:49:31
maintainerNone
docs_urlNone
authorMIT Data To AI Lab
requires_python<3.12,>=3.8
licenseMIT license
keywords sigpro signal processing tools machine learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <p align="left">
<img width=15% src="https://dai.lids.mit.edu/wp-content/uploads/2018/06/Logo_DAI_highres.png" alt="DAI-Lab" />
<i>An open source project from Data to AI Lab at MIT.</i>
</p>

[![Development Status](https://img.shields.io/badge/Development%20Status-2%20--%20Pre--Alpha-yellow)](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
[![PyPi Shield](https://img.shields.io/pypi/v/SigPro.svg)](https://pypi.python.org/pypi/SigPro)
[![Tests](https://github.com/sintel-dev/SigPro/workflows/Run%20Tests/badge.svg)](https://github.com/sintel-dev/SigPro/actions?query=workflow%3A%22Run+Tests%22+branch%3Amaster)
[![Downloads](https://pepy.tech/badge/sigpro)](https://pepy.tech/project/sigpro)


# SigPro: Signal Processing Tools for Machine Learning

* License: [MIT](https://github.com/sintel-dev/SigPro/blob/master/LICENSE)
* Development Status: [Pre-Alpha](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)
* Homepage: https://github.com/sintel-dev/SigPro

## Overview

SigPro offers an end-to-end solution to efficiently apply multiple *signal processing techniques*
to convert *raw time series* into *feature time series* that encode the knowledge of domain experts
in order to solve time series machine learning problems.

# Install

## Requirements

**SigPro** has been developed and tested on [Python 3.8, 3.9, 3.10, and 3.11](https://www.python.org/downloads/)
on GNU/Linux and macOS systems.

Also, although it is not strictly required, the usage of a [virtualenv](
https://virtualenv.pypa.io/en/latest/) is highly recommended in order to avoid
interfering with other software installed in the system where **SigPro** is run.

## Install with pip

The easiest and recommended way to install **SigPro** is using [pip](
https://pip.pypa.io/en/stable/):

```bash
pip install sigpro
```

This will pull and install the latest stable release from [PyPi](https://pypi.org/).

If you want to install from source or contribute to the project please read the
[Contributing Guide](CONTRIBUTING.md).


# User Guides

`SigPro` comes with the following user guides:

* [PRIMITIVES.md](PRIMITIVES.md): Information about the primitive families, their expected input
  and output.
* [USAGE.md](USAGE.md): Instructions about how to usee the three main functionalities of `SigPro`.
* [DEVELOPMENT.md](DEVELOPMENT.md): Step by step guide about how to write a valid `SigPro`
  primitive and contribute it to either `SigPro` or your own library.


# History

## 0.2.1 - 2024-04-24

### Features

* Frequency primitive - [Issue #60](https://github.com/sintel-dev/SigPro/pull/60)


## 0.2.0 - 2024-02-02

### Features
* Demo Notebooks for Pipeline usage  - [Issue #55](https://github.com/sintel-dev/SigPro/issues/55) by @andyx13
* Added `contributing_primitive` and `basic_primitives` module to assist with new primitive creation/usage   - [Issue #54](https://github.com/sintel-dev/SigPro/issues/54) by @andyx13
* Incorrect classification for stft.json and stft_real.json - [Issue #53](https://github.com/sintel-dev/SigPro/issues/53) by @andyx13
* Support for more complex pipeline architectures - [Issue #52](https://github.com/sintel-dev/SigPro/issues/52) by @andyx13
* Update primitive interfaces - [Issue #51](https://github.com/sintel-dev/SigPro/issues/51) by @andyx13
* Syntax for pipeline creation - [Issue #41](https://github.com/sintel-dev/SigPro/issues/41) by @andyx13
* Load demo dataset at random index - [Issue #35](https://github.com/sintel-dev/SigPro/issues/35) by @andyx13


## 0.1.2 - 2023-12-11

### Features
* Python version update - [Issue #44](https://github.com/sintel-dev/SigPro/issues/44) by @andyx13
* Add demo notebook and per-primitive documentation - [Issue #47](https://github.com/sintel-dev/SigPro/issues/47) by @andyx13


## 0.1.1 - 2023-04-06

### Features
* Accepting single value data frame format - [Issue #36](https://github.com/sintel-dev/SigPro/issues/36) by @frances-h @sarahmish
* Update demos - [Issue #26](https://github.com/sintel-dev/SigPro/pull/26) by @frances-h


## 0.1.0 - 2021-11-14

### Features
* Rework SigPro to be class based


## 0.0.3 - 2021-09-27

### Features
* Add `process_signals` function to take a collection of primitives and create features for the given data. 


## 0.0.2 - 2021-02-05

### Bug Fixes

* `MANIFEST.in`: copy the json files of the primitives with the package installation.


## 0.0.1 - 2021-01-26

First release to PyPI.

This release comes with the first version of the `contributing` module, which makes it easier
to create new primitives and to test those with the demo data included in this package.

This release also includes the following User Guides:

* [PRIMITIVES.md](https://github.com/sintel-dev/SigPro/blob/master/PRIMITIVES.md): Information
  about the primitive families, their expected input and output.
* [USAGE.md](https://github.com/sintel-dev/SigPro/blob/master/USAGE.md): Instructions about how
  to usee the three main functionalities of `SigPro`.
* [DEVELOPMENT.md](https://github.com/sintel-dev/SigPro/blob/master/DEVELOPMENT.md): Step by step
  guide about how to write a valid `SigPro` primitive and contribute it to either `SigPro` or
  your own library.

### Features

* Demo data: Available demo data to test primitives.
* First primitives: The following list of primitives were added:
  * `sigpro.aggregations.amplitude.statistical.crest_factor`
  * `sigpro.aggregations.amplitude.statistical.kurtosis`
  * `sigpro.aggregations.amplitude.statistical.mean`
  * `sigpro.aggregations.amplitude.statistical.rms`
  * `sigpro.aggregations.amplitude.statistical.skew`
  * `sigpro.aggregations.amplitude.statistical.std`
  * `sigpro.aggregations.amplitude.statistical.var`
  * `sigpro.transformations.amplitude.identity.identity`
  * `sigpro.transformations.frequency.fft.fft`
  * `sigpro.transformations.frequency.fft.fft_real`
  * `sigpro.transformations.frequency_time.stft.stft`
  * `sigpro.transformations.frequency_time.stft.stft_real`
* Contributing module.
* Documentation on how to contribute new primitives and how to run those.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/sintel-dev/SigPro",
    "name": "sigpro",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.8",
    "maintainer_email": null,
    "keywords": "sigpro signal processing tools machine learning",
    "author": "MIT Data To AI Lab",
    "author_email": "dailabmit@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/89/5f/4aedc677713f6854b1a35719947f08a611b508383345333d61d8331bc8af/sigpro-0.2.1.tar.gz",
    "platform": null,
    "description": "<p align=\"left\">\n<img width=15% src=\"https://dai.lids.mit.edu/wp-content/uploads/2018/06/Logo_DAI_highres.png\" alt=\"DAI-Lab\" />\n<i>An open source project from Data to AI Lab at MIT.</i>\n</p>\n\n[![Development Status](https://img.shields.io/badge/Development%20Status-2%20--%20Pre--Alpha-yellow)](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)\n[![PyPi Shield](https://img.shields.io/pypi/v/SigPro.svg)](https://pypi.python.org/pypi/SigPro)\n[![Tests](https://github.com/sintel-dev/SigPro/workflows/Run%20Tests/badge.svg)](https://github.com/sintel-dev/SigPro/actions?query=workflow%3A%22Run+Tests%22+branch%3Amaster)\n[![Downloads](https://pepy.tech/badge/sigpro)](https://pepy.tech/project/sigpro)\n\n\n# SigPro: Signal Processing Tools for Machine Learning\n\n* License: [MIT](https://github.com/sintel-dev/SigPro/blob/master/LICENSE)\n* Development Status: [Pre-Alpha](https://pypi.org/search/?c=Development+Status+%3A%3A+2+-+Pre-Alpha)\n* Homepage: https://github.com/sintel-dev/SigPro\n\n## Overview\n\nSigPro offers an end-to-end solution to efficiently apply multiple *signal processing techniques*\nto convert *raw time series* into *feature time series* that encode the knowledge of domain experts\nin order to solve time series machine learning problems.\n\n# Install\n\n## Requirements\n\n**SigPro** has been developed and tested on [Python 3.8, 3.9, 3.10, and 3.11](https://www.python.org/downloads/)\non GNU/Linux and macOS systems.\n\nAlso, although it is not strictly required, the usage of a [virtualenv](\nhttps://virtualenv.pypa.io/en/latest/) is highly recommended in order to avoid\ninterfering with other software installed in the system where **SigPro** is run.\n\n## Install with pip\n\nThe easiest and recommended way to install **SigPro** is using [pip](\nhttps://pip.pypa.io/en/stable/):\n\n```bash\npip install sigpro\n```\n\nThis will pull and install the latest stable release from [PyPi](https://pypi.org/).\n\nIf you want to install from source or contribute to the project please read the\n[Contributing Guide](CONTRIBUTING.md).\n\n\n# User Guides\n\n`SigPro` comes with the following user guides:\n\n* [PRIMITIVES.md](PRIMITIVES.md): Information about the primitive families, their expected input\n  and output.\n* [USAGE.md](USAGE.md): Instructions about how to usee the three main functionalities of `SigPro`.\n* [DEVELOPMENT.md](DEVELOPMENT.md): Step by step guide about how to write a valid `SigPro`\n  primitive and contribute it to either `SigPro` or your own library.\n\n\n# History\n\n## 0.2.1 - 2024-04-24\n\n### Features\n\n* Frequency primitive - [Issue #60](https://github.com/sintel-dev/SigPro/pull/60)\n\n\n## 0.2.0 - 2024-02-02\n\n### Features\n* Demo Notebooks for Pipeline usage  - [Issue #55](https://github.com/sintel-dev/SigPro/issues/55) by @andyx13\n* Added `contributing_primitive` and `basic_primitives` module to assist with new primitive creation/usage   - [Issue #54](https://github.com/sintel-dev/SigPro/issues/54) by @andyx13\n* Incorrect classification for stft.json and stft_real.json - [Issue #53](https://github.com/sintel-dev/SigPro/issues/53) by @andyx13\n* Support for more complex pipeline architectures - [Issue #52](https://github.com/sintel-dev/SigPro/issues/52) by @andyx13\n* Update primitive interfaces - [Issue #51](https://github.com/sintel-dev/SigPro/issues/51) by @andyx13\n* Syntax for pipeline creation - [Issue #41](https://github.com/sintel-dev/SigPro/issues/41) by @andyx13\n* Load demo dataset at random index - [Issue #35](https://github.com/sintel-dev/SigPro/issues/35) by @andyx13\n\n\n## 0.1.2 - 2023-12-11\n\n### Features\n* Python version update - [Issue #44](https://github.com/sintel-dev/SigPro/issues/44) by @andyx13\n* Add demo notebook and per-primitive documentation - [Issue #47](https://github.com/sintel-dev/SigPro/issues/47) by @andyx13\n\n\n## 0.1.1 - 2023-04-06\n\n### Features\n* Accepting single value data frame format - [Issue #36](https://github.com/sintel-dev/SigPro/issues/36) by @frances-h @sarahmish\n* Update demos - [Issue #26](https://github.com/sintel-dev/SigPro/pull/26) by @frances-h\n\n\n## 0.1.0 - 2021-11-14\n\n### Features\n* Rework SigPro to be class based\n\n\n## 0.0.3 - 2021-09-27\n\n### Features\n* Add `process_signals` function to take a collection of primitives and create features for the given data. \n\n\n## 0.0.2 - 2021-02-05\n\n### Bug Fixes\n\n* `MANIFEST.in`: copy the json files of the primitives with the package installation.\n\n\n## 0.0.1 - 2021-01-26\n\nFirst release to PyPI.\n\nThis release comes with the first version of the `contributing` module, which makes it easier\nto create new primitives and to test those with the demo data included in this package.\n\nThis release also includes the following User Guides:\n\n* [PRIMITIVES.md](https://github.com/sintel-dev/SigPro/blob/master/PRIMITIVES.md): Information\n  about the primitive families, their expected input and output.\n* [USAGE.md](https://github.com/sintel-dev/SigPro/blob/master/USAGE.md): Instructions about how\n  to usee the three main functionalities of `SigPro`.\n* [DEVELOPMENT.md](https://github.com/sintel-dev/SigPro/blob/master/DEVELOPMENT.md): Step by step\n  guide about how to write a valid `SigPro` primitive and contribute it to either `SigPro` or\n  your own library.\n\n### Features\n\n* Demo data: Available demo data to test primitives.\n* First primitives: The following list of primitives were added:\n  * `sigpro.aggregations.amplitude.statistical.crest_factor`\n  * `sigpro.aggregations.amplitude.statistical.kurtosis`\n  * `sigpro.aggregations.amplitude.statistical.mean`\n  * `sigpro.aggregations.amplitude.statistical.rms`\n  * `sigpro.aggregations.amplitude.statistical.skew`\n  * `sigpro.aggregations.amplitude.statistical.std`\n  * `sigpro.aggregations.amplitude.statistical.var`\n  * `sigpro.transformations.amplitude.identity.identity`\n  * `sigpro.transformations.frequency.fft.fft`\n  * `sigpro.transformations.frequency.fft.fft_real`\n  * `sigpro.transformations.frequency_time.stft.stft`\n  * `sigpro.transformations.frequency_time.stft.stft_real`\n* Contributing module.\n* Documentation on how to contribute new primitives and how to run those.\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "Signal Processing Tools for Machine Mearning",
    "version": "0.2.1",
    "project_urls": {
        "Homepage": "https://github.com/sintel-dev/SigPro"
    },
    "split_keywords": [
        "sigpro",
        "signal",
        "processing",
        "tools",
        "machine",
        "learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e95b34b10abbfa4a94e1f4ca8e56a755b8f88bcf24a127271bc5afe0b3cc117f",
                "md5": "c7276464271e1f253a89e63aaf403651",
                "sha256": "22ddb95a564a8fbcc323d07156c7f9701e754db1608392a4adaafa7bf5111906"
            },
            "downloads": -1,
            "filename": "sigpro-0.2.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c7276464271e1f253a89e63aaf403651",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": "<3.12,>=3.8",
            "size": 2797939,
            "upload_time": "2024-04-24T16:49:28",
            "upload_time_iso_8601": "2024-04-24T16:49:28.885615Z",
            "url": "https://files.pythonhosted.org/packages/e9/5b/34b10abbfa4a94e1f4ca8e56a755b8f88bcf24a127271bc5afe0b3cc117f/sigpro-0.2.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "895f4aedc677713f6854b1a35719947f08a611b508383345333d61d8331bc8af",
                "md5": "08c74ba13b2d13d2d3e22cca55db4e70",
                "sha256": "c7dea7b6512f717748f147964736b82d554dd04a6164b3eab2ee7afb04c0b5c8"
            },
            "downloads": -1,
            "filename": "sigpro-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "08c74ba13b2d13d2d3e22cca55db4e70",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.8",
            "size": 2805014,
            "upload_time": "2024-04-24T16:49:31",
            "upload_time_iso_8601": "2024-04-24T16:49:31.462214Z",
            "url": "https://files.pythonhosted.org/packages/89/5f/4aedc677713f6854b1a35719947f08a611b508383345333d61d8331bc8af/sigpro-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-24 16:49:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sintel-dev",
    "github_project": "SigPro",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "sigpro"
}
        
Elapsed time: 2.70869s