simages


Namesimages JSON
Version 23.0.7 PyPI version JSON
download
home_pagehttps://github.com/justinshenk/simages
SummaryFind similar images in a dataset
upload_time2023-06-22 16:05:56
maintainerJustin Shenk
docs_urlNone
authorJustin Shenk
requires_python>= 3.6
licenseMIT
keywords images photos duplicates preprocessing similar data
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # :monkey: simages:monkey:
[![PyPI version](https://badge.fury.io/py/simages.svg)](https://badge.fury.io/py/simages) [![Build Status](https://travis-ci.com/justinshenk/simages.svg?branch=master)](https://travis-ci.com/justinshenk/simages)  [![Documentation Status](https://readthedocs.org/projects/simages/badge/?version=latest)](https://simages.readthedocs.io/en/latest/?badge=latest) [![DOI](https://zenodo.org/badge/188052094.svg)](https://zenodo.org/badge/latestdoi/188052094) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/justinshenk/simages/master?filepath=demo.ipynb)


Find similar images within a dataset. 

Useful for removing duplicate images from a dataset after scraping images with [google-images-download](https://github.com/hardikvasa/google-images-download).

The Python API returns `pairs, duplicates`, where pairs are the (ordered) closest pairs and distances is the 
corresponding embedding distance.

### Install

See the [installation docs](https://simages.readthedocs.io/en/latest/install.html) for all details. 

```bash
pip install simages
```

or install from source:

```bash
git clone https://github.com/justinshenk/simages
cd simages
pip install .
```

To install the interactive interface, [install mongodb](https://docs.mongodb.com/manual/installation/) and use rather `pip install "simages[all]"`.

### Demo

1. Minimal command-line interface with ```simages-show```:

![simages_demo](images/simages_demo.gif)

2. Interactive image deletion with ```simages add/find```:
![simages_web_demo](images/screenshot_server.png)

### Usage

Two interfaces exist:

1. minimal interface which plots the duplicates for visual inspection
2. mongodb + flask interface which allows interactive deletion [optional]
 
#### Minimal Interface

In your console, enter the directory with images and use `simages-show`:

```bash
$ simages-show --data-dir .
```

```
usage: simages-show [-h] [--data-dir DATA_DIR] [--show-train]
                    [--epochs EPOCHS] [--num-channels NUM_CHANNELS]
                    [--pairs PAIRS] [--zdim ZDIM] [-s]

  -h, --help            show this help message and exit
  --data-dir DATA_DIR, -d DATA_DIR
                        Folder containing image data
  --show-train, -t      Show training of embedding extractor every epoch
  --epochs EPOCHS, -e EPOCHS
                        Number of passes of dataset through model for
                        training. More is better but takes more time.
  --num-channels NUM_CHANNELS, -c NUM_CHANNELS
                        Number of channels for data (1 for grayscale, 3 for
                        color)
  --pairs PAIRS, -p PAIRS
                        Number of pairs of images to show
  --zdim ZDIM, -z ZDIM  Compression bits (bigger generally performs better but
                        takes more time)
  -s, --show            Show closest pairs

```

#### Web Interface [Optional]

Note: To install the web interface API, [install and run mongodb](https://docs.mongodb.com/manual/installation/) and use `pip install "simages[all]"` to install optional dependencies.

Add your pictures to the database (this will take some time depending on the number of pictures)

```
simages add <images_folder_path>
```

A webpage will come up with all of the similar or duplicate pictures:
```
simages find <images_folder_path>
```

```
Usage:
    simages add <path> ... [--db=<db_path>] [--parallel=<num_processes>]
    simages remove <path> ... [--db=<db_path>]
    simages clear [--db=<db_path>]
    simages show [--db=<db_path>]
    simages find <path> [--print] [--delete] [--match-time] [--trash=<trash_path>] [--db=<db_path>] [--epochs=<epochs>]
    simages -h | --help
Options:
    -h, --help                Show this screen
    --db=<db_path>            The location of the database or a MongoDB URI. (default: ./db)
    --parallel=<num_processes> The number of parallel processes to run to hash the image
                               files (default: number of CPUs).
    find:
        --print               Only print duplicate files rather than displaying HTML file
        --delete              Move all found duplicate pictures to the trash. This option takes priority over --print.
        --match-time          Adds the extra constraint that duplicate images must have the
                              same capture times in order to be considered.
        --trash=<trash_path>  Where files will be put when they are deleted (default: ./Trash)
        --epochs=<epochs>     Epochs for training [default: 2]
```


### Python APIs

#### Numpy array

```python
from simages import find_duplicates
import numpy as np

array_data = np.random.random(100, 3, 48, 48)# N x C x H x W
pairs, distances = find_duplicates(array_data)
 
```

#### Folder

```python
from simages import find_duplicates

data_dir = "my_images_folder"
pairs, distances = find_duplicates(data_dir)
 
```

Default options for `find_duplicates` are:

```python
def find_duplicates(
    input: Union[str or np.ndarray],
    n: int = 5,
    num_epochs: int = 2,
    num_channels: int = 3,
    show: bool = False,
    show_train: bool = False,
    **kwargs
):
    """Find duplicates in dataset. Either `array` or `data_dir` must be specified.

    Args:
        input (str or np.ndarray): folder directory or N x C x H x W array
        n (int): number of closest pairs to identify
        num_epochs (int): how long to train the autoencoder (more is generally better)
        show (bool): display the closest pairs
        show_train (bool): show output every
        z_dim (int): size of compression (more is generally better, but slower)
        kwargs (dict): etc, passed to `EmbeddingExtractor`

    Returns:
        pairs (np.ndarray): indices for closest pairs of images, n x 2 array
        distances (np.ndarray): distances of each pair to each other
```

#### `Embeddings` API

```python
from simages import Embeddings
import numpy as np

N = 1000
data = np.random.random((N, 28, 28))
embeddings = Embeddings(data)

# Access the array
array = embeddings.array # N x z (compression size)

# Get 10 closest pairs of images
pairs, distances = embeddings.duplicates(n=5)

```

```python
In [0]: pairs
Out[0]: array([[912, 990], [716, 790], [907, 943], [483, 492], [806, 883]])

In [1]: distances
Out[1]: array([0.00148035, 0.00150703, 0.00158789, 0.00168699, 0.00168721])
```

#### `EmbeddingExtractor` API

```python
from simages import EmbeddingExtractor
import numpy as np

N = 1000
data = np.random.random((N, 28, 28))
extractor = EmbeddingExtractor(data, num_channels=1) # grayscale

# Show 10 closest pairs of images
pairs, distances = extractor.show_duplicates(n=10)

```

Class attributes and parameters:

```python
class EmbeddingExtractor:
    """Extract embeddings from data with models and allow visualization.

    Attributes:
        trainloader (torch loader)
        evalloader (torch loader)
        model (torch.nn.Module)
        embeddings (np.ndarray)

    """
    def __init__(
        self,
        input:Union[str, np.ndarray],
        num_channels=None,
        num_epochs=2,
        batch_size=32,
        show_train=True,
        show=False,
        z_dim=8,
        **kwargs,
    ):
    """Inits EmbeddingExtractor with input, either `str` or `np.nd.array`, performs training and validation.
    
    Args:
    input (np.ndarray or str): data
    num_channels (int): grayscale = 1, color = 3
    num_epochs (int): more is better (generally)
    batch_size (int): number of images per batch
    show_train (bool): show intermediate training results
    show (bool): show closest pairs
    z_dim (int): compression size
    kwargs (dict)
    
    """

```

Specify tne number of pairs to identify with the parameter `n`.
 
### How it works

*simages* uses a convolutional autoencoder with PyTorch and compares the latent representations with [closely](https://github.com/justinshenk/closely) :triangular_ruler:.

#### Dependencies

*simages* depends on
the following packages:

- [closely](https://github.com/justinshenk/closely)
- [torch](https://pytorch.org)
- [torchvision](https://pytorch.org)
- scikit-learn
- matplotlib

The following dependencies are required for the interactive deleting interface:
 
- pymongodb
- fastcluster
- flask
- jinja2
- dnspython
- python-magic
- termcolor

### Cite

If you use simages, please cite it:
```
    @misc{justin_shenk_2019_3237830,
      author       = {Justin Shenk},
      title        = {justinshenk/simages: v19.0.1},
      month        = jun,
      year         = 2019,
      doi          = {10.5281/zenodo.3237830},
      url          = {https://doi.org/10.5281/zenodo.3237830}
    }
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/justinshenk/simages",
    "name": "simages",
    "maintainer": "Justin Shenk",
    "docs_url": null,
    "requires_python": ">= 3.6",
    "maintainer_email": "shenkjustin@gmail.com",
    "keywords": "images,photos,duplicates,preprocessing,similar data",
    "author": "Justin Shenk",
    "author_email": "shenkjustin@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/9e/49/c578fc57305cca6339175f9f3e641800f587d3a6e614dbcea5abb0615856/simages-23.0.7.tar.gz",
    "platform": null,
    "description": "# :monkey: simages:monkey:\n[![PyPI version](https://badge.fury.io/py/simages.svg)](https://badge.fury.io/py/simages) [![Build Status](https://travis-ci.com/justinshenk/simages.svg?branch=master)](https://travis-ci.com/justinshenk/simages)  [![Documentation Status](https://readthedocs.org/projects/simages/badge/?version=latest)](https://simages.readthedocs.io/en/latest/?badge=latest) [![DOI](https://zenodo.org/badge/188052094.svg)](https://zenodo.org/badge/latestdoi/188052094) [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/justinshenk/simages/master?filepath=demo.ipynb)\n\n\nFind similar images within a dataset. \n\nUseful for removing duplicate images from a dataset after scraping images with [google-images-download](https://github.com/hardikvasa/google-images-download).\n\nThe Python API returns `pairs, duplicates`, where pairs are the (ordered) closest pairs and distances is the \ncorresponding embedding distance.\n\n### Install\n\nSee the [installation docs](https://simages.readthedocs.io/en/latest/install.html) for all details. \n\n```bash\npip install simages\n```\n\nor install from source:\n\n```bash\ngit clone https://github.com/justinshenk/simages\ncd simages\npip install .\n```\n\nTo install the interactive interface, [install mongodb](https://docs.mongodb.com/manual/installation/) and use rather `pip install \"simages[all]\"`.\n\n### Demo\n\n1. Minimal command-line interface with ```simages-show```:\n\n![simages_demo](images/simages_demo.gif)\n\n2. Interactive image deletion with ```simages add/find```:\n![simages_web_demo](images/screenshot_server.png)\n\n### Usage\n\nTwo interfaces exist:\n\n1. minimal interface which plots the duplicates for visual inspection\n2. mongodb + flask interface which allows interactive deletion [optional]\n \n#### Minimal Interface\n\nIn your console, enter the directory with images and use `simages-show`:\n\n```bash\n$ simages-show --data-dir .\n```\n\n```\nusage: simages-show [-h] [--data-dir DATA_DIR] [--show-train]\n                    [--epochs EPOCHS] [--num-channels NUM_CHANNELS]\n                    [--pairs PAIRS] [--zdim ZDIM] [-s]\n\n  -h, --help            show this help message and exit\n  --data-dir DATA_DIR, -d DATA_DIR\n                        Folder containing image data\n  --show-train, -t      Show training of embedding extractor every epoch\n  --epochs EPOCHS, -e EPOCHS\n                        Number of passes of dataset through model for\n                        training. More is better but takes more time.\n  --num-channels NUM_CHANNELS, -c NUM_CHANNELS\n                        Number of channels for data (1 for grayscale, 3 for\n                        color)\n  --pairs PAIRS, -p PAIRS\n                        Number of pairs of images to show\n  --zdim ZDIM, -z ZDIM  Compression bits (bigger generally performs better but\n                        takes more time)\n  -s, --show            Show closest pairs\n\n```\n\n#### Web Interface [Optional]\n\nNote: To install the web interface API, [install and run mongodb](https://docs.mongodb.com/manual/installation/) and use `pip install \"simages[all]\"` to install optional dependencies.\n\nAdd your pictures to the database (this will take some time depending on the number of pictures)\n\n```\nsimages add <images_folder_path>\n```\n\nA webpage will come up with all of the similar or duplicate pictures:\n```\nsimages find <images_folder_path>\n```\n\n```\nUsage:\n    simages add <path> ... [--db=<db_path>] [--parallel=<num_processes>]\n    simages remove <path> ... [--db=<db_path>]\n    simages clear [--db=<db_path>]\n    simages show [--db=<db_path>]\n    simages find <path> [--print] [--delete] [--match-time] [--trash=<trash_path>] [--db=<db_path>] [--epochs=<epochs>]\n    simages -h | --help\nOptions:\n    -h, --help                Show this screen\n    --db=<db_path>            The location of the database or a MongoDB URI. (default: ./db)\n    --parallel=<num_processes> The number of parallel processes to run to hash the image\n                               files (default: number of CPUs).\n    find:\n        --print               Only print duplicate files rather than displaying HTML file\n        --delete              Move all found duplicate pictures to the trash. This option takes priority over --print.\n        --match-time          Adds the extra constraint that duplicate images must have the\n                              same capture times in order to be considered.\n        --trash=<trash_path>  Where files will be put when they are deleted (default: ./Trash)\n        --epochs=<epochs>     Epochs for training [default: 2]\n```\n\n\n### Python APIs\n\n#### Numpy array\n\n```python\nfrom simages import find_duplicates\nimport numpy as np\n\narray_data = np.random.random(100, 3, 48, 48)# N x C x H x W\npairs, distances = find_duplicates(array_data)\n \n```\n\n#### Folder\n\n```python\nfrom simages import find_duplicates\n\ndata_dir = \"my_images_folder\"\npairs, distances = find_duplicates(data_dir)\n \n```\n\nDefault options for `find_duplicates` are:\n\n```python\ndef find_duplicates(\n    input: Union[str or np.ndarray],\n    n: int = 5,\n    num_epochs: int = 2,\n    num_channels: int = 3,\n    show: bool = False,\n    show_train: bool = False,\n    **kwargs\n):\n    \"\"\"Find duplicates in dataset. Either `array` or `data_dir` must be specified.\n\n    Args:\n        input (str or np.ndarray): folder directory or N x C x H x W array\n        n (int): number of closest pairs to identify\n        num_epochs (int): how long to train the autoencoder (more is generally better)\n        show (bool): display the closest pairs\n        show_train (bool): show output every\n        z_dim (int): size of compression (more is generally better, but slower)\n        kwargs (dict): etc, passed to `EmbeddingExtractor`\n\n    Returns:\n        pairs (np.ndarray): indices for closest pairs of images, n x 2 array\n        distances (np.ndarray): distances of each pair to each other\n```\n\n#### `Embeddings` API\n\n```python\nfrom simages import Embeddings\nimport numpy as np\n\nN = 1000\ndata = np.random.random((N, 28, 28))\nembeddings = Embeddings(data)\n\n# Access the array\narray = embeddings.array # N x z (compression size)\n\n# Get 10 closest pairs of images\npairs, distances = embeddings.duplicates(n=5)\n\n```\n\n```python\nIn [0]: pairs\nOut[0]: array([[912, 990], [716, 790], [907, 943], [483, 492], [806, 883]])\n\nIn [1]: distances\nOut[1]: array([0.00148035, 0.00150703, 0.00158789, 0.00168699, 0.00168721])\n```\n\n#### `EmbeddingExtractor` API\n\n```python\nfrom simages import EmbeddingExtractor\nimport numpy as np\n\nN = 1000\ndata = np.random.random((N, 28, 28))\nextractor = EmbeddingExtractor(data, num_channels=1) # grayscale\n\n# Show 10 closest pairs of images\npairs, distances = extractor.show_duplicates(n=10)\n\n```\n\nClass attributes and parameters:\n\n```python\nclass EmbeddingExtractor:\n    \"\"\"Extract embeddings from data with models and allow visualization.\n\n    Attributes:\n        trainloader (torch loader)\n        evalloader (torch loader)\n        model (torch.nn.Module)\n        embeddings (np.ndarray)\n\n    \"\"\"\n    def __init__(\n        self,\n        input:Union[str, np.ndarray],\n        num_channels=None,\n        num_epochs=2,\n        batch_size=32,\n        show_train=True,\n        show=False,\n        z_dim=8,\n        **kwargs,\n    ):\n    \"\"\"Inits EmbeddingExtractor with input, either `str` or `np.nd.array`, performs training and validation.\n    \n    Args:\n    input (np.ndarray or str): data\n    num_channels (int): grayscale = 1, color = 3\n    num_epochs (int): more is better (generally)\n    batch_size (int): number of images per batch\n    show_train (bool): show intermediate training results\n    show (bool): show closest pairs\n    z_dim (int): compression size\n    kwargs (dict)\n    \n    \"\"\"\n\n```\n\nSpecify tne number of pairs to identify with the parameter `n`.\n \n### How it works\n\n*simages* uses a convolutional autoencoder with PyTorch and compares the latent representations with [closely](https://github.com/justinshenk/closely) :triangular_ruler:.\n\n#### Dependencies\n\n*simages* depends on\nthe following packages:\n\n- [closely](https://github.com/justinshenk/closely)\n- [torch](https://pytorch.org)\n- [torchvision](https://pytorch.org)\n- scikit-learn\n- matplotlib\n\nThe following dependencies are required for the interactive deleting interface:\n \n- pymongodb\n- fastcluster\n- flask\n- jinja2\n- dnspython\n- python-magic\n- termcolor\n\n### Cite\n\nIf you use simages, please cite it:\n```\n    @misc{justin_shenk_2019_3237830,\n      author       = {Justin Shenk},\n      title        = {justinshenk/simages: v19.0.1},\n      month        = jun,\n      year         = 2019,\n      doi          = {10.5281/zenodo.3237830},\n      url          = {https://doi.org/10.5281/zenodo.3237830}\n    }\n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Find similar images in a dataset",
    "version": "23.0.7",
    "project_urls": {
        "Homepage": "https://github.com/justinshenk/simages"
    },
    "split_keywords": [
        "images",
        "photos",
        "duplicates",
        "preprocessing",
        "similar data"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c288367a1b6cfa525e228911e0e925e010f8f10f350d5984318e8209aef83f3",
                "md5": "06fec5c1cf15411e654f1883c9717bbc",
                "sha256": "0ca2de57ae0438d92a057bdcbd7301b2de8ff865e96206bf1c3dadca23901001"
            },
            "downloads": -1,
            "filename": "simages-23.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "06fec5c1cf15411e654f1883c9717bbc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">= 3.6",
            "size": 14723528,
            "upload_time": "2023-06-22T16:04:57",
            "upload_time_iso_8601": "2023-06-22T16:04:57.907415Z",
            "url": "https://files.pythonhosted.org/packages/7c/28/8367a1b6cfa525e228911e0e925e010f8f10f350d5984318e8209aef83f3/simages-23.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9e49c578fc57305cca6339175f9f3e641800f587d3a6e614dbcea5abb0615856",
                "md5": "cbf416cd8808bdf4637cfb52b3773bf0",
                "sha256": "ad14051ffdd7a4a2f9950465ffea530deb4e9817e3b9b5d8848d471a92654292"
            },
            "downloads": -1,
            "filename": "simages-23.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "cbf416cd8808bdf4637cfb52b3773bf0",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">= 3.6",
            "size": 27267470,
            "upload_time": "2023-06-22T16:05:56",
            "upload_time_iso_8601": "2023-06-22T16:05:56.189861Z",
            "url": "https://files.pythonhosted.org/packages/9e/49/c578fc57305cca6339175f9f3e641800f587d3a6e614dbcea5abb0615856/simages-23.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-06-22 16:05:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "justinshenk",
    "github_project": "simages",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "simages"
}
        
Elapsed time: 0.10882s