simba-ml


Namesimba-ml JSON
Version 1.0.0rc15 PyPI version JSON
download
home_page
SummarySimulation-Based Machine Learning
upload_time2023-10-11 12:06:47
maintainer
docs_urlNone
authorMaximilian Kleissl, Björn Heyder, Julian Zabbarov, Lukas Drews
requires_python
license
keywords python machine learning simulation ordinary differential equations ode simba simba-ml
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # SimbaML

SimbaML is an all-in-one framework for integrating prior knowledge of ODE models into the ML process by synthetic data augmentation. It allows for the convenient generation of realistic synthetic data by sparsifying and adding noise. Furthermore, our framework provides customizable pipelines for various ML experiments, such as identifying needs for data collection and transfer learning.

![Overview of the SimbaML Framework](docs/source/_static/visualabstract.png)

# Installation

SimbaML requires Python 3.10 or newer and can be installed via pip:

```
pip install simba_ml
```

To be lightweight, SimbaML does not install PyTorch and TensorFlow per default. Both packages need to be installed manually by the user.

```
pip install pytorch-lightning>=1.9.0
```

```
pip install tensorflow>=2.10.0; platform_machine != 'arm64'
```

For further details on how to install Tensorflow on ARM-based MacOS devices, see: https://developer.apple.com/metal/tensorflow-plugin/


# Documentation

We provide detailed documentation for SimbaML here: https://simbaml.readthedocs.io/.



            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "simba-ml",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "python,machine learning,simulation,ordinary differential equations,ode,simba,simba-ml",
    "author": "Maximilian Kleissl, Bj\u00f6rn Heyder, Julian Zabbarov, Lukas Drews",
    "author_email": "maximilian.kleissl@student.hpi.de,bjoern.heyder@student.hpi.de,julian.zabbarov@student.hpi.de,lukas.drews@student.hpi.de",
    "download_url": "https://files.pythonhosted.org/packages/5a/22/075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0/simba_ml-1.0.0rc15.tar.gz",
    "platform": null,
    "description": "# SimbaML\n\nSimbaML is an all-in-one framework for integrating prior knowledge of ODE models into the ML process by synthetic data augmentation. It allows for the convenient generation of realistic synthetic data by sparsifying and adding noise. Furthermore, our framework provides customizable pipelines for various ML experiments, such as identifying needs for data collection and transfer learning.\n\n![Overview of the SimbaML Framework](docs/source/_static/visualabstract.png)\n\n# Installation\n\nSimbaML requires Python 3.10 or newer and can be installed via pip:\n\n```\npip install simba_ml\n```\n\nTo be lightweight, SimbaML does not install PyTorch and TensorFlow per default. Both packages need to be installed manually by the user.\n\n```\npip install pytorch-lightning>=1.9.0\n```\n\n```\npip install tensorflow>=2.10.0; platform_machine != 'arm64'\n```\n\nFor further details on how to install Tensorflow on ARM-based MacOS devices, see: https://developer.apple.com/metal/tensorflow-plugin/\n\n\n# Documentation\n\nWe provide detailed documentation for SimbaML here: https://simbaml.readthedocs.io/.\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Simulation-Based Machine Learning",
    "version": "1.0.0rc15",
    "project_urls": {
        "Bug Tracker": "https://github.com/DILiS-lab/SimbaML/issues",
        "Documentation": "https://simbaml.readthedocs.io",
        "Source Code": "https://github.com/DILiS-lab/SimbaML"
    },
    "split_keywords": [
        "python",
        "machine learning",
        "simulation",
        "ordinary differential equations",
        "ode",
        "simba",
        "simba-ml"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c79c7ab34b1be3628d05aedc0863228545f863301ed68035a1a8ae08116d5388",
                "md5": "e63fb173ccbd372746cbdb7ffb07dda9",
                "sha256": "175ccd6960ba45b4ecb9092391fca160b076346af548345955ccfe93e9af50b4"
            },
            "downloads": -1,
            "filename": "simba_ml-1.0.0rc15-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e63fb173ccbd372746cbdb7ffb07dda9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 112560,
            "upload_time": "2023-10-11T12:06:45",
            "upload_time_iso_8601": "2023-10-11T12:06:45.343782Z",
            "url": "https://files.pythonhosted.org/packages/c7/9c/7ab34b1be3628d05aedc0863228545f863301ed68035a1a8ae08116d5388/simba_ml-1.0.0rc15-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5a22075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0",
                "md5": "0743c7e514e4187e77c8cba449d59123",
                "sha256": "3457f17a2ef3b1b6b03ad908d871843cfc4d51159c7c30702096787e15ef8e8b"
            },
            "downloads": -1,
            "filename": "simba_ml-1.0.0rc15.tar.gz",
            "has_sig": false,
            "md5_digest": "0743c7e514e4187e77c8cba449d59123",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 72370,
            "upload_time": "2023-10-11T12:06:47",
            "upload_time_iso_8601": "2023-10-11T12:06:47.996558Z",
            "url": "https://files.pythonhosted.org/packages/5a/22/075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0/simba_ml-1.0.0rc15.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-11 12:06:47",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DILiS-lab",
    "github_project": "SimbaML",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "lcname": "simba-ml"
}
        
Elapsed time: 2.18161s