# SimbaML
SimbaML is an all-in-one framework for integrating prior knowledge of ODE models into the ML process by synthetic data augmentation. It allows for the convenient generation of realistic synthetic data by sparsifying and adding noise. Furthermore, our framework provides customizable pipelines for various ML experiments, such as identifying needs for data collection and transfer learning.
![Overview of the SimbaML Framework](docs/source/_static/visualabstract.png)
# Installation
SimbaML requires Python 3.10 or newer and can be installed via pip:
```
pip install simba_ml
```
To be lightweight, SimbaML does not install PyTorch and TensorFlow per default. Both packages need to be installed manually by the user.
```
pip install pytorch-lightning>=1.9.0
```
```
pip install tensorflow>=2.10.0; platform_machine != 'arm64'
```
For further details on how to install Tensorflow on ARM-based MacOS devices, see: https://developer.apple.com/metal/tensorflow-plugin/
# Documentation
We provide detailed documentation for SimbaML here: https://simbaml.readthedocs.io/.
Raw data
{
"_id": null,
"home_page": "",
"name": "simba-ml",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "python,machine learning,simulation,ordinary differential equations,ode,simba,simba-ml",
"author": "Maximilian Kleissl, Bj\u00f6rn Heyder, Julian Zabbarov, Lukas Drews",
"author_email": "maximilian.kleissl@student.hpi.de,bjoern.heyder@student.hpi.de,julian.zabbarov@student.hpi.de,lukas.drews@student.hpi.de",
"download_url": "https://files.pythonhosted.org/packages/5a/22/075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0/simba_ml-1.0.0rc15.tar.gz",
"platform": null,
"description": "# SimbaML\n\nSimbaML is an all-in-one framework for integrating prior knowledge of ODE models into the ML process by synthetic data augmentation. It allows for the convenient generation of realistic synthetic data by sparsifying and adding noise. Furthermore, our framework provides customizable pipelines for various ML experiments, such as identifying needs for data collection and transfer learning.\n\n![Overview of the SimbaML Framework](docs/source/_static/visualabstract.png)\n\n# Installation\n\nSimbaML requires Python 3.10 or newer and can be installed via pip:\n\n```\npip install simba_ml\n```\n\nTo be lightweight, SimbaML does not install PyTorch and TensorFlow per default. Both packages need to be installed manually by the user.\n\n```\npip install pytorch-lightning>=1.9.0\n```\n\n```\npip install tensorflow>=2.10.0; platform_machine != 'arm64'\n```\n\nFor further details on how to install Tensorflow on ARM-based MacOS devices, see: https://developer.apple.com/metal/tensorflow-plugin/\n\n\n# Documentation\n\nWe provide detailed documentation for SimbaML here: https://simbaml.readthedocs.io/.\n\n\n",
"bugtrack_url": null,
"license": "",
"summary": "Simulation-Based Machine Learning",
"version": "1.0.0rc15",
"project_urls": {
"Bug Tracker": "https://github.com/DILiS-lab/SimbaML/issues",
"Documentation": "https://simbaml.readthedocs.io",
"Source Code": "https://github.com/DILiS-lab/SimbaML"
},
"split_keywords": [
"python",
"machine learning",
"simulation",
"ordinary differential equations",
"ode",
"simba",
"simba-ml"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c79c7ab34b1be3628d05aedc0863228545f863301ed68035a1a8ae08116d5388",
"md5": "e63fb173ccbd372746cbdb7ffb07dda9",
"sha256": "175ccd6960ba45b4ecb9092391fca160b076346af548345955ccfe93e9af50b4"
},
"downloads": -1,
"filename": "simba_ml-1.0.0rc15-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e63fb173ccbd372746cbdb7ffb07dda9",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 112560,
"upload_time": "2023-10-11T12:06:45",
"upload_time_iso_8601": "2023-10-11T12:06:45.343782Z",
"url": "https://files.pythonhosted.org/packages/c7/9c/7ab34b1be3628d05aedc0863228545f863301ed68035a1a8ae08116d5388/simba_ml-1.0.0rc15-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5a22075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0",
"md5": "0743c7e514e4187e77c8cba449d59123",
"sha256": "3457f17a2ef3b1b6b03ad908d871843cfc4d51159c7c30702096787e15ef8e8b"
},
"downloads": -1,
"filename": "simba_ml-1.0.0rc15.tar.gz",
"has_sig": false,
"md5_digest": "0743c7e514e4187e77c8cba449d59123",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 72370,
"upload_time": "2023-10-11T12:06:47",
"upload_time_iso_8601": "2023-10-11T12:06:47.996558Z",
"url": "https://files.pythonhosted.org/packages/5a/22/075fd2bb51169bcf1a99fb5ca8c1feaddcdb958cea200aec74604d55d1e0/simba_ml-1.0.0rc15.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-11 12:06:47",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "DILiS-lab",
"github_project": "SimbaML",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"requirements": [],
"lcname": "simba-ml"
}